
 

 

 
 
 

 
 
 

The Centre of Gravity Network Effects Tool: Probabilistic 
Modelling for Operational Planning  

 
 

Lucia Falzon and Jayson Priest 
 

Command and Control Division 
Information Sciences Laboratory 

 
DSTO-TR-1604 

 
 

 
 

ABSTRACT  
 

The centre of gravity (COG) Network Effects Tool (COGNET) uses Bayesian networks to 
represent the COG causal structure. Its impact analysis capability facilitates the determination 
of the critical vulnerabilities that have to be degraded or negated to influence the COG. 
COGNET provides a modelling framework and a generic model database to aid knowledge 
reuse and knowledge transfer.   Its graphical user interface is tailored to the military user and 
provides a user-friendly capability for populating and interacting with the models. In this 
report we discuss the methodology, development and implementation of the COGNET suite. 
The importance of this work is that it uses existing planning process concepts to facilitate the 
construction of comprehensive models in which uncertainties and subjective judgements are 
clearly represented, thus enabling future re-use and traceability.   
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The Centre of Gravity Network Effects Tool: 
Probabilistic Modelling for Operational 

Planning  
 

Executive Summary 
 
A number of research projects are currently under way in DSTO�s Command & 
Control Division motivated by a need for systematic and rigorous support for 
operational-level planning. The research is focussed on developing decision-making 
tools with an underlying conceptual framework that complements the ADF planning 
process but with a theoretical underpinning derived from decision analysis. All these 
tools feature interfaces that take into account the military user�s level of expertise and 
do not require a background in operations research. They are being integrated using 
well-founded effects-based concepts to form an Integrated Modelling Environment 
(In-MODE), featuring a knowledge framework, which enables storage for future 
analysis and re-use. 
 
This report addresses one of the In-MODE research projects: the Centre of Gravity 
Network Effects Tool (COGNET), which uses causal probabilistic networks to 
represent the relationships among the critical capabilities and requirements for a 
Centre Of Gravity (COG) construct. These networks provide a visual representation of 
the COG causal structure to clarify thinking and provide a useful way to record and 
impart this thinking; and Bayesian techniques to determine which actions are most 
likely to achieve a desirable end-state. COG analysis is an integral and cognitively 
demanding aspect of military operational planning. It involves identifying the enemy 
and friendly COG and subsequently determining the critical vulnerabilities that have 
to be degraded or negated to influence the COG of each side. A thorough 
understanding of the relationships between a COG and its underlying capabilities and 
requirements is crucial to the development of a sound military plan. The relationship 
structure is often complex and not always easy to determine. COGNET goes a long 
way to facilitate this task and it provides an effects-based analysis capability.  
 
COGNET embraces the COG analysis concepts in military planning thereby 
encouraging structured problem solving. It provides a graphical representation of 
complex relationships between capabilities and requirements that facilitates a shared 
understanding and has a user-friendly capability for populating, evaluating and 
interacting with the models. The suite includes an impact analysis tool that provides a 
measure of effectiveness in terms of the impact that the critical requirements have on a 
COG as well as an ability to determine the amount of influence that needs to be 
achieved over relevant critical requirements in order to obtain a predetermined effect. 
It provides a generic models database to facilitate the construction of comprehensive 
models and enable future re-use and traceability, and has provision for compiling large 
complex networks. We describe a modelling framework based on the causal 
relationships among the critical capabilities and requirements for an operation. We 



 

 

then use this framework as a basis for the construction, population and analysis of 
Bayesian networks to support a rigorous and systematic approach to COG analysis. 
The importance of this work is that it uses existing planning process concepts to 
facilitate the construction of comprehensive models in which uncertainties and 
subjective judgements are clearly represented. 
 
 
 



 

 

Authors 
 
 
 

Lucia Falzon 
Command and Control Division 
 
Lucia Falzon is a Senior Research Scientist in DSTO�s Systems 
Simulation and Assessment Group. Her current research interests 
include research into probabilistic modelling  techniques to support 
military planning, in particular network models for supporting 
Command and Control decision-making. 

____________________ ________________________________________________ 
 
Jayson Priest 
Command and Control Division 
 
Jayson Priest is a Research Scientist in the Command and Control 
Division. He holds a PhD in Physics from the University of New 
England. His previous research activities are in the areas of plasma 
surface modification and modelling and simulation of gaseous 
electronic phenomena. His current research interests include 
modelling, simulation and analysis of command and control 
processes for development of decision support systems in a Joint 
operational environment. 

____________________ ________________________________________________ 
 
 
 
 
 
 
 



 

  

Contents 
 

1. INTRODUCTION ............................................................................................................... 1 

2. PROBABILISTIC MODELS FOR DECISION SUPPORT........................................... 2 
2.1 Systematic decision making ................................................................................... 2 

2.1.1 Bayesian networks and influence diagrams ............................................ 3 
2.1.2 The Analytic Hierarchy Process  [Saaty 1994] ......................................... 3 
2.1.3 Markov decision processes ........................................................................ 4 

2.2 Bayesian modelling .................................................................................................. 5 
2.2.1 Reasoning about uncertainty ..................................................................... 7 

3. COG REPRESENTATION USING BAYESIAN NETS................................................ 7 
3.1 Operational planning concepts .............................................................................. 7 
3.2 Modelling key concepts........................................................................................... 9 
3.3 Characteristics of COGNET models...................................................................... 9 
3.4 Other planning tools based on probabilistic models ...................................... 11 

4. THE COGNET SUITE....................................................................................................... 12 
4.1 Generic models........................................................................................................ 13 
4.2 The COGNET system and user interface ........................................................... 13 

4.2.1 Individual and group user views............................................................ 16 
4.2.2 Constructing a scenario ............................................................................ 17 

4.3 Generating the conditional probabilities........................................................... 18 
4.4 Model evaluation .................................................................................................... 20 
4.5 Impact analysis........................................................................................................ 22 

4.5.1 The relative impact analysis algorithm. ................................................. 24 
4.5.2 Dealing with unknown entities and validated data ............................. 25 
4.5.3 Impact analysis with combinations ........................................................ 26 
4.5.4 Impact analysis with intermediate states (or degraded states)........... 26 

5. COMPILING LARGE COMPLEX NETWORKS......................................................... 26 
5.1 Complex COGNET Networks .............................................................................. 26 

6. CONCLUSION .................................................................................................................. 29 

7. ACKNOWLEDGEMENTS............................................................................................... 30 

8. REFERENCES..................................................................................................................... 31 
 
 





 
 

 
 

Abbreviations 
 
AAR  Air-to-Air Refuelling 
ADF  Australian Defence Force 
ADFWC Australian Defence Force Warfare Centre 
AHP  Analytic Hierarchy Process 
ANP  Analytic Network Process 
BAI  Battlefield Air Interdiction 
BDA  Battle Damage Assessment 
CAP  Combat Air Patrol 
CAST  Causal Strengths 
CC   Critical Capability 
COA  Course of Action 
COA-Sim COA Simulation 
COAST COA Scheduling Tool 
COG  Centre of Gravity 
COGNET COG Network Effects Tool 
CPT  Conditional Probability Table 
CR   Critical Requirement 
CV   Critical Vulnerability 
GUI  Graphical User Interface 
HQ   Headquarters 
In-MODE Integrated Modelling Environment 
IO   Information Operations 
JMAP  Joint Military Appreciation Process 
JOPC  Joint Operations Planning Course 
POL  Petroleum, Oil and Lubricants 
SIAM  Situational Influence Assessment Module 

 

 
 
 
 
 
 
 
 
 
 





     
DSTO-TR-1604 

   
  1 

 

 

1. Introduction 

 
A number of research projects are currently under way in DSTO�s Command & 
Control Division motivated by a need for systematic and rigorous support for 
operational-level planning. The research, which has been influenced by the Joint 
Operational Planning Course (JOPC) instructors at the ADF Warfare Centre (ADFWC) 
as well as our observations of operational planning teams, is focussed on developing 
decision-making tools with an underlying conceptual framework that complements the 
Australian Defence Force (ADF) planning process but with a theoretical underpinning 
derived from decision analysis. Among these is the Course Of Action Scheduling Tool 
(COAST) [Zhang et al. 2002], which provides a mathematical representation of a course 
of action (COA) to enable quantitative analysis for sequencing and scheduling of tasks 
in an optimised COA; and COA Simulation (COA-Sim) [Matthews & Davies 2003], a 
software agent-based wargaming tool to explore the feasibility, effectiveness and risk 
of an operational-level COA. All these tools feature interfaces that take into account the 
military user�s level of expertise and do not require a background in operations 
research. They are being integrated using well-founded effects-based concepts to form 
an Integrated Modelling Environment (In-MODE), featuring a knowledge framework, 
which enables structured data storage for future analysis and re-use. 
 
This report addresses one of the In-MODE research projects: the Centre of Gravity 
Network Effects Tool (COGNET), which uses causal probabilistic networks to 
represent the relationships among the critical capabilities and requirements for a 
Centre Of Gravity (COG) construct [Falzon et al. 2000 and 2001; Priest et al. 2002, Falzon 
2004]. COGNET models typically represent the functional decomposition of the centre 
of gravity to identify its influencing elements and to categorise them into a hierarchy: 
COG, critical capabilities and lower-level capabilities and requirements. This type of 
decomposition ensures that the direction of influence travels up the functional 
hierarchy. In other words, targeting a critical requirement at the bottom of the 
hierarchy produces an effect on all related elements higher up. Using this model it is 
possible to investigate the effect that a set of actions has on the COG.  
 
In the following sections we give a comprehensive description of the concepts 
underlying COGNET. The structure of the report follows the historical structure of the 
development of COGNET, starting with a look at some of the well-tried techniques of 
decision analysis to lead into the motivation for the adoption of Bayesian modelling for 
our problem of interest. A good understanding of the key concepts of operational art is 
as essential for military operational planners as it is for developers of operational 
planning support tools. In Section Three we describe the concepts underlying the 
relevant aspects of military planning, as an introduction to a description of the 
COGNET suite and how it is envisaged that COGNET will be used in operational 
planning. 
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2. Probabilistic Models for Decision Support 

2.1 Systematic decision making 

Decision analysis typically draws on Operations Research techniques such as 
probabilistic modelling, optimisation and game theory. These form a basis for 
analytical methods to evaluate and structure incomplete knowledge in order to reason 
about how an action taken in the current decision would lead to a result. Decision 
analysis provides a systematic method for structuring a complex decision problem. It is 
motivated by a need to understand the current state of knowledge, its limitations and 
implications.  The analysis is normally performed with some decision-making criterion 
in mind, such as the valuation of outcomes in terms of benefits and costs or reduction 
of risks, independent of costs and benefits, and the criteria adopted are explicitly 
declared. Uncertainties about quantities or about the appropriate model structure 
should be clearly defined and a systematic sensitivity and uncertainty analysis should 
be conducted in order to determine the effect that changes in input values and model 
topology have on the concluding analysis [Morgan and Henrion 1990].  
 
The kind of complex decision problems under consideration here, i.e. military planning 
for joint operations, have multiple dimensions of cost and impact and are typified by 
an environment of uncertainty. The systems analysis approach of disaggregating the 
problem systematically and evaluating the expected utilities associated with multiple 
attributes (including inherent risk) provides a way around this problem. In this way 
individual domain experts can make a judgement in their own area of expertise rather 
than an overall judgement in a complex domain. Judgements about values are by 
nature subjective and vary among individuals. In order to solve a complex decision 
problem we need a structure that models the components within the system and the 
causal influences and effects among the components so that it enables elicitation of 
judgements and a way to represent them quantitatively. In the approach advocated by 
Saaty, judgement is based on paired comparisons relative to a common criterion or 
goal [Saaty 1996]. Similarly, probabilistic modelling techniques, such as Bayesian belief 
networks and influence diagrams, rely on the ability of probability theory to process 
context-sensitive beliefs [Pearl, 1988]. These models are populated with conditional 
probabilities (the probability that A is true given the context, C), which are easier to 
estimate than absolute probabilities.  
 
Barclay et al. present a methodology [Barclay et al. 1977] which is based on four 
elements: a set of initial courses of action, a set of possible consequences for each initial 
act, the value of each act in terms of money, utility or some other unit and the 
likelihood that a particular act will result in a particular consequence. The first two 
elements are an integral part of Course of Action (COA) development in military 
operational level planning. Ideally, the last two elements should form the basis of a 
systematic COA analysis.  

http://www.mors.org/meetings/ebo/ebo_read.htm
http://www.mors.org/meetings/ebo/ebo_read.htm
http://www.mors.org/meetings/ebo/ebo_read.htm
http://www.mors.org/meetings/ebo/ebo_read.htm
http://www.mors.org/meetings/ebo/ebo_read.htm
http://www.mors.org/meetings/ebo/ebo_read.htm
http://www.mors.org/meetings/ebo/ebo_read.htm
http://www.mors.org/meetings/ebo/ebo_read.htm
http://www.mors.org/meetings/ebo/ebo_read.htm
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In this section we briefly describe some of the techniques used in quantitative decision 
analysis for modelling decisions under uncertainty. We begin with Bayesian networks, 
which is the modelling technique of choice for the class of problems discussed in this 
report. We include the others for completeness. 
 
2.1.1 Bayesian networks and influence diagrams 

A Bayesian network is used to model a domain that has inherent uncertainty due to a 
combination of incomplete knowledge of the domain and randomness in the 
environment. The network may be represented by a directed acyclic graph whose 
nodes correspond to random variables linked by causal dependencies. The causal 
direction is represented by the direction of the arcs in the graph. Each node has 
associated with it a set of potential states. A node in a Bayesian network is called a 
parent of another node if there is an arrow from the former pointing to the latter.  Each 
node has associated with it a conditional probability of the node being in a specified 
state given the states of its parent nodes. If a node has no parents it is assigned an 
initial probability of being in each of its potential states. A Bayesian network can be 
constructed from the qualitative causal knowledge, estimates of probabilities and 
subjective beliefs held by a domain expert.  
 
Influence diagrams are graphical models for structuring predefined sequences of 
actions and observations [Jensen 2001]. They were originally developed as a compact 
representation of decision trees but can be thought of as an extension of Bayesian 
networks. Making a decision is modelled as choosing a set of decision variables in a 
Bayesian network and fixing their values unambiguously [1988]. This would alter the 
probability distribution of the consequences of the decisions and determine the 
expected utility associated with the decision chosen. Any Bayesian network can be 
converted into an influence diagram by adding decision variables, representing the 
choices available to the decision-maker, and the expected utilities associated with each 
decision. Arcs pointing to utility and chance nodes represent functional dependence 
whereas arcs pointing to decision nodes show which variables will be known to the 
decision-maker before the decision is made, implying time precedence. The value of 
each decision variable is imposed from the outside to meet some objective. Influence 
diagrams have two main limitations: the graph must contain a directed path 
encompassing all decision variables; and the next set of observation and decisions in 
the sequence must be independent of the current set. 
 
2.1.2  The Analytic Hierarchy Process  [Saaty 1994] 

The Analytic Hierarchy Process (AHP) derives ratio scales of relative magnitudes of a 
set of elements by making paired comparisons with respect to importance, preference 
or likelihood of a property they have in common. Decision making with the AHP is 
based on ranking activities in terms of relative ratio scales.  
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The various elements of a decision problem are organised into a multiple-level 
hierarchy. Each level has multiple nodes with respect to which the alternatives on the 
next level are compared. The first step in the analysis is to compare the elements in 
each level in pairs according to their contribution to the parent node in the level above. 
A pairwise scale of relative priorities is derived from the pairwise comparisons for the 
group. This is repeated for all groups on all levels.  A weighting process uses these 
priorities to rank the overall importance of the criteria. 
 
Judgements for comparing the criteria of a particular level can be represented by a 
reciprocal (i.e. ]/1[][ jiij aa = ) square matrix whose elements reflect the relative 
importance of the criterion represented by the row compared to the criterion 
represented by the column. The components of the eigenvector of the matrix, termed 
the priorities vector, represent the conversion of the pairwise comparison of the criteria 
into a ratio scale (the sum of these numbers must be one). The principle eigenvalue 
gives a measure of the consistency of the judgements. The procedure is repeated for 
every criterion. The sub criteria under each criterion are compared with respect to that 
criterion to obtain their local priorities. The importance of each sub criterion is 
weighted by the priority of the parent criterion to obtain its global priority. At the 
lowest level the global priorities are summed to obtain the overall priorities. 
 
The AHP can be extended to an Analytic Network Process (ANP) to incorporate 
dependencies and feedback [Saaty 1996]. While hierarchies are concerned with the 
extent of a quality among the elements being compared, a network is concerned with 
the extent of influence on some element with respect to a given quality. A network is 
well suited to modelling dependence relations among components. It makes it possible 
to represent and analyse interactions and to synthesise their mutual effects by a single 
logical procedure.  
 
2.1.3 Markov decision processes  

Markov decision processes use the fundamental properties of Markov processes to find 
optimal strategies for decision making using dynamic programming techniques. Each 
decision taken incurs a cost or reward and affects the decision maker's state, so 
affecting future choices. A Markov decision process is a controlled stochastic process, 
in which costs are assigned to state transitions. There are four main components in 
these decision processes: a set of states, a set of possible actions, the immediate reward 
of the actions and the effects of the actions. In essence the decision-maker observes the 
current state and must choose among a finite set of possible actions incurring a possible 
cost (or reward) for each action chosen. The costs and state transition probabilities are 
functions only of the last state and subsequent action (i.e. they satisfy the Markov 
property). The set of rules by which the decision-maker chooses alternatives at each 
stage of the process is called a policy. It determines the transitions that optimise 
outcomes according to some performance criteria, for example, maximising the 
expected aggregate reward. 
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In Bayesian decision theory, the underlying Markov process has uncertain transition 
probabilities and rewards. It uses the Bayesian theory of probability to characterise 
degrees of uncertainty in terms of subjective probabilities. The decision-maker can 
update information about the current state by performing experiments. 
 
2.2 Bayesian modelling 

Bayesian methodology is based on conditional probabilities: if A and B are not 
independent then the belief in A given that B is known is denoted by P(A|B) and 
described as �the probability of A given B�. Probability theory defines this conditional 
probability as being equal to the probability of A and B, divided by the probability of B, 

)(/),()|( BPBAPBAP = - it represents the degree of belief in the state of A when the 
state of B is known. Similarly the probability of B given A can be calculated in the same 
way thus yielding Bayes� Law, 
 

                               
)(

)()|()|(
BP

APABPBAP =  . 

This rule is the very basis of Bayesian analysis. It allows information updating in 
response to new evidence. Three steps are involved in Bayesian modelling: developing 
a probability model that incorporates prior knowledge about the probabilities required; 
updating knowledge by conditioning probabilities on observed data; evaluating the 
model with respect to the data and the sensitivity of the conclusions to the 
assumptions.  
 
Bayesian networks [see Pearl 1988 and Jensen 2001] are directed acyclic graphs 
representing the causal relations in a particular domain. The topology of the directed 
graph defines the conditional independence relationships among the variables in the 
network represented by the nodes. Each variable has associated with it a set of two or 
more potential values or states. The probability of being in each particular state of a 
node is conditioned on the states of each of its parent nodes, that is, the strength of the 
causal relationships among the nodes is expressed as a conditional probability. Let ix  
denote some value for variable iX  and pai denote some set of values for Xi�s parents, 
then P(xi|pai) denotes the conditional distribution.  

 
 
 
 
 
 
 
 
 
 

Figure 1: An example Bayesian network 
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In Figure 1, node C is a parent of nodes E and F and a child of node A, representing the 
fact that the state of node F is conditioned on the state of node C, which is in turn 
conditioned on the state of node A. For each node a conditional probability distribution 
P(xi|pai) must be specified. If the node has no parents then its unconditional 
probability P(xi) must be specified instead. For the network in Figure 1 we require the 
probabilities P(A), P(C|A), P(B|A), P(F|C), P(E|B,C), P((D|B) in order to compute the 
joint distribution, 

 
)|()|(),|()|()|()(=),,,,,( CFPBDPCBEPACPABPAPFEDCBAP . 

 
This equation is valid because it is assumed in these networks that each variable is 
conditionally independent of its non-descendants in the network, given its parents. 
Variables 1X  and 2X  are said to be conditionally independent given 3X  if 

)|(=),|( 31321 XXPXXXP .  
 
As Pearl [Pearl, 1988] points out, the advantage of this graphical representation is that 
it allows a specification of direct dependencies representing the fundamental 
qualitative relationships. In fact the network structure and link direction defines the 
conditional independencies among the variables in the network according to a criterion 
called d-separation, which is loosely defined in terms of causal dependencies with 
reference to Figure 1 as follows. For paths traversing diverging arrows (D←B→E) or 
serial arrows (A→B→E) the connection between the variables at each end of the path is 
considered blocked (i.e. they are d-separated) if B is known. However, the path 
traversing B→E←C  (converging arrows) should not be interpreted as transmitting 
information between B and C until E is instantiated. B and C are considered marginally 
independent; they become mutually dependent once evidence on E is received.  
 
The conditional probabilities required for a Bayesian network can be elicited from a 
domain expert. They may be completely subjective estimates of the likelihood of an 
event. However, in Bayesian formalism the measures must obey the fundamental 
axioms of probability theory. The network is a graphical representation of a decision 
maker�s subjective and uncertain knowledge of a domain.  
 
An added advantage of using these models for reasoning is due to the conditional 
independence property described above. In order to determine the conditional 
probabilities P(xi|pai), we can ignore all the relationships in the network except for the 
ones between iX  and its parents. Determining such context-dependent probabilities is 
much more compatible with human reasoning than estimating absolute probabilities. 
In the statement �the probability of A given B�, B serves as a context of the belief 
attributed to A and is much easier to determine than �the probability of A and B�. 
Probabilities provide the means for drawing inferences from causal connections and 
the relative strengths of those connections.  
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2.2.1 Reasoning about uncertainty 

Building a Bayesian network involves three tasks [Drudzel &Van der Gaag 2000]. First 
one must identify the variables that need to be included in the model and possible 
states or values have to be specified. The second task is to identify the relationships 
among the variables and construct a directed acyclic graph to represent the direction of 
causal dependence, adding more variables as needed to construct a comprehensive 
model. Bayesian nets are by convention Markovian: each variable is independent of its 
non-descendents, conditional on its parents. This property helps us to structure the 
network when it comes to deciding which variables should be explicitly modelled 
among the parents of a particular variable. The final task is to assign conditional 
probabilities to each fragment (a child node and its parents) and unconditional 
probabilities to the parentless nodes, which we will interchangeably call leaf or initial 
nodes. These probabilities might come from various sources: statistical data, literature 
or experiential knowledge from domain experts. The latter source is useful not only for 
providing the probabilities required but also for fine-tuning and verifying numbers 
obtained from other sources. However, eliciting probabilities from experts is time-
consuming and is susceptible to biases and inconsistencies. In most cases of interest to 
us there is not enough historical data available and initial probabilities as well as 
conditional probabilities must be elicited from subjective area experts with little or no 
knowledge of the statistical aspects of data, thus making consistency an important 
requirement. By consistency we mean that elicited probabilities do not contradict each 
other, for instance the subset of an event having a higher probability than the event 
itself.  
 
The properties inherent in Bayesian modelling: the graphical structure reflecting direct 
dependencies; the ability to clearly reflect uncertainty using probabilities; and the fact 
that these probabilities are context-dependent and therefore easier to determine, make 
Bayesian networks very suitable for COG representation. 
 

3. COG Representation Using Bayesian Nets 

3.1 Operational planning concepts 

The Joint Military Appreciation Process (JMAP) has been adopted as the basis for 
operational level planning in the ADF. The initial stage of any operational-level 
planning process, such as the JMAP, typically includes some form of mission analysis. 
This involves identifying and analysing the superior commander�s intent in order to 
ensure that commanders and staff can determine which tasks are essential to achieve 
the operational objective. Correct assessment of the objective is deemed to be crucial to 
success at the operational level. In current ADF thinking the objective can be achieved 
by targeting the enemy�s centre of gravity (COG) through their vulnerabilities while 
protecting one�s own, so that the operational objective and the COG are inexorably 
linked. The COG, a key concept of operational art, is defined as that characteristic, 
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capability or locality from which a military force, nation or alliance derives its freedom of action, 
strength or will to fight at that level of conflict. The centre of gravity at each level of conflict 
might consist of a number of key elements [ADDP 5.0.1 2002].  
 
Once the enemy COG has been determined, the planners must generate suitable COA. 
Suitability refers to whether it meets the objectives as detailed in the mission analysis 
step. In the operational context a COG is typically a high-level capability or 
characteristic, such as �Operational Sustainability� or �Force Projection Capability� 
(indeed, it has also been described as �a focal point that gives a force purpose and 
direction� [Echevarria 2003]). Therefore directly targeting the enemy COG is not 
usually feasible, and a critical capability analysis is conducted at this stage of the 
planning process. A critical capability (CC) is defined to be a characteristic or key element 
of a force that if destroyed, captured or neutralised will significantly undermine the fighting 
capability of the force and its centre of gravity [ADDP 5.0.1 2002]. Each CC might have a 
number of associated critical requirements (CR), which are essential for it to be fully 
functional. These requirements may be further decomposed into critical vulnerabilities 
(CV): elements that are potentially vulnerable [ADDP 5.0.1 2002, Chapter 2].   
 
Related to these two concepts is the notion of a decisive point: a major event that is a 
precondition to the successful disruption or negation of a COG of either combatant. Each COA 
developed in this step must target the enemy COG by exploiting the enemy�s critical 
vulnerabilities in a sequence of actions known as a line of operation. The planners must 
also identify critical vulnerabilities and decisive points from the enemy�s perspective, 
that is, related to the friendly COG. In summary, this stage of the JMAP should identify 
the enemy�s COG, a number of approaches to undermine and neutralise it, the decisive 
points and lines of operation for each of these approaches and the critical 
vulnerabilities contributing to each decisive point. In addition the planners should 
determine their own force�s COG and related decisive points and critical 
vulnerabilities.  
 
It is also stipulated that �throughout COA development the staff must consider the 
�cost-benefit� that results in apportioning capabilities and rates of effort to achieve 
objectives and tasks�, and they should also �identify and analyse the consequences of 
potential risks and how they may impact on own and higher missions� [ADDP 5.0.1 
2002, Section 2.41]. All four elements of Barclay�s methodology defined in Section 2.1 
are thus represented. It could be argued that what is missing is a systematic 
comparative assessment based on the costs, benefits and risks of each COA, broken 
down into its component actions. A comparative assessment is done in Step 4 of JMAP, 
the Decision and Execution step. The decision criteria used in this step are derived 
from the war game analysis in Step 3 (COA analysis). They are measured over the 
whole COA rather than over each action in the lines of operations. This type of 
decision-making is categorised as a holistic decision rule in the literature. Sage [Sage 
1981] describes it as reasoning by intuitive affect and typically absorbing information 
by looking at the situation as a whole rather than disaggregating it into its component 
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parts. The two approaches are complementary and compatible and, ideally, both types 
of assessment should be carried out. 
 
3.2 Modelling key concepts 

Our aim is to develop a relational model between the key concepts currently used by 
operational planners in COA development: end-state, centre of gravity, critical 
vulnerabilities, decisive points and lines of operation.  It is motivated by a need for a 
rigorous methodology for COA analysis based on these concepts. In [Zhang et al. 2000] 
we draw out these relationships and apply them to develop a modelling framework. In 
this section we use this framework as a basis for an influence model to support COA 
development. The models are structured to reflect the relationships among the 
planning concepts detailed above.  
 
At the COA development stage, the planners develop sequences of actions to connect 
the initial and military end-state through time and space using available means [Zhang 
et al. 2002]. To do this they must first determine ways to influence the operational 
centre of gravity, directly or indirectly. It is important at this stage to keep the COG in 
mind. As explained in  [Giles and Galvin 1996], �exploiting weaknesses and 
vulnerabilities are clearly important considerations; however, doing so will not cause 
the deteriorating effect desired unless it influences the centre of gravity".  
 
The relational model we present here aims to support this activity. It represents the 
COG and all the elements that influence it.  Functional decomposition of the centre of 
gravity is used to identify the influencing elements and to categorise them into a 
hierarchy: COG, critical capabilities (typically abstract functions) and lower-level 
capabilities and requirements, such as general functions, processes and physical 
systems. As we will see below, such decomposition ensures that targeting a physical 
system produces an effect on all related elements higher up in the hierarchy. COGNET 
seeks to exploit the benefits of systematic modelling and, as will be shown in the next 
section, Bayesian nets in particular. In addition, COGNET uses existing operational 
planning process concepts as an underlying framework, making it easier to embed its 
usage by military planners. 
 
 
3.3 Characteristics of COGNET models 

COGNET models are causal probabilistic networks that represent the functional 
decomposition of the centre of gravity to identify its influencing elements and to 
facilitate critical capability analysis.  A typical COGNET model would be structured as 
shown in Figure 2, a network produced in HUGIN [www.hugin.com], a software tool 
for building Bayesian networks, which forms the Bayesian engine for COGNET.   
 
The COG node at the highest level is dependent on its parent nodes representing high-
level critical capabilities, which, in turn, are dependent on other critical capabilities or 
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requirements, as expressed in the definitions of these concepts given in Section 3.1. 
This representation is useful for several reasons: a) the combined states of the low-level 
requirements, which are usually observable elements, allow us to estimate the state of 
unobservable (possibly abstract) higher-level capabilities; b) the relationship among 
such requirements and capabilities is often uncertain and is better represented by a 
probability rather than a unique deterministic quantity; c) the conditional 
independence property in Bayesian networks allows us to reason about these 
probabilistic strengths in a context-dependent way.  
 
In critical capability analysis we are trying to determine the effect that lower-level 
nodes have on the higher-level nodes rather than attempting to infer the converse. 
Indeed, in general, it is easier to make a judgement about the state of low-level nodes, 
which typically represent physical resources that contribute to a capability or abstract 
function.  
 

 
 

Figure 2: A simple Bayesian network representing a typical COGNET structure 

 
Figure 3 shows an example Bayesian network representation of a typical 
COG/CC/CR/CV analysis. The network represents the results of a COG analysis 
exercise conducted by students at a Joint Operations Planning course. It is based upon 
a fictitious scenario used for training purposes in which the perceived threat was an 
imminent invasion of an island belonging to an ally. The threat COG was assessed as 
the ability of the enemy to project force, which was subsequently broken down into its 
associated critical capabilities and requirements. The leaf nodes represent critical 
elements that are potential targets and hence potentially vulnerable. In this particular 
network each node can be in one of three states, named �strong�, �degraded� and 
�unavailable�, although it is possible to assign any number (at least two) of states to a 
node and give each state any name as required. 
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It can be shown that, in such networks, leaf nodes that have a significant impact on the 
COG are typically ones that have many paths leading to its node. This network 
represents a simple example of a COG network, yet even in this case it can be seen that 
it is possible to trace a path from certain high-impact nodes, such as �petroleum, oil 
and lubricants� (POL), in several different ways. Conversely, low-impact nodes are 
typically ones that have a single path to the COG. Network structure conveys 
important conceptual information. It allows users to distinguish between direct and 
indirect dependencies.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: A typical COG network 

 
3.4 Other planning tools based on probabilistic models 

Decision theory techniques, based on systems analysis and probabilistic modelling, 
have been used in different ways for such military problems as planning counter-
measures for terrorist threats [Paté-Cornell & Guikema 2002]; planning naval 
operations [Kidd 2002]; and collaborative strategic planning [Rosen & Smith 2000]. 
Evans et. al. use Dynamic Bayesian Nets to represent the causal relationship between 
lower-level friendly tasks and higher-level effects on adversary systems in order to 
guide plan generation and to analyse the observed impact of planned military actions 
during plan execution [Evans et. al. 2003]. Another probabilistic modelling tool, the 
Situational Influence Assessment Module (SIAM) [Rosen & Smith 1996], uses graphical 
models known as Influence Nets, which were specifically developed for analysing the 
causal relations for complex situations. SIAM nets represent events that influence other 
events, whose relationships are modelled as promoting and inhibiting influences, or 
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causal strengths, rather than strict conditional probabilities. SIAM is typically used in 
an unstructured planning session to brainstorm different ideas. Its proprietary 
population and analysis mechanisms mimic a special case of Bayesian networks 
(influence diagrams, see Section 2.1.1) and use an approximating algorithm to convert 
user-defined �causal strengths� into conditional probabilities [de Poel et al. 2002].  
COGNET, on the other hand, has been designed (in collaboration with ADFWC 
planning instructors) to support the ADF COG analysis as defined in doctrine. It is 
based on classical Bayesian network modelling techniques, which use conditional 
probabilities and model functional and probabilistic dependencies. The goals that 
motivated the development of all these tools are very similar. Graphical probabilistic 
models such as SIAM�s influence nets, Bayesian nets and influence diagrams, provide a 
visual representation that facilitates reasoning and enhances shared understanding of 
complex situations. Moreover, this reasoning can be better imparted and recorded for 
future reference. The analysis functions are well developed and add significant value 
to the modelling 
 
The advantages of these systematic techniques are many: a structured approach 
clarifies the complex interrelationships among the variables of interest and facilitates 
�what if� analysis; the problem can be handled in a piecemeal approach without losing 
sight of the whole structure; the representation of the problem is an ideal way to clarify 
and store concepts arising from planning sessions, enabling future re-use and 
traceability; uncertainties and subjective judgements are clearly represented. Like the 
other probabilistic planning tools COGNET seeks to exploit the benefits of systematic 
modelling. In addition, COGNET uses existing ADF planning process concepts as an 
underlying framework. As a result, it fits directly into ADF planning doctrine, making 
it easier to embed its usage by military planners into standard operating procedures. A 
significant proportion of the project has been dedicated to developing an interface and 
a suite of tools that match users� requirements. 
 
 

4. The COGNET Suite 

COGNET provides a visual representation of the centre of gravity causal structure and 
an impact analysis capability, which facilitates the determination of the critical 
vulnerabilities that have to be degraded or negated to influence the COG.  Its graphical 
user interface is tailored to the military user and provides a user-friendly capability for 
populating and interacting with the models. COGNET provides a framework and 
database structure, which can serve as a knowledge base representing generic causal 
relationships to aid knowledge reuse and knowledge transfer. In this section we 
describe each aspect of the COGNET suite and discuss how it is envisaged that military 
planners will use them. 
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4.1 Generic models 

During the course of the development of COGNET the need for a modular knowledge 
representation became evident [Falzon et al. 2001]. Building a comprehensive COG 
network systematically takes more time than is normally available during a crisis 
situation or even during an exercise. However, there is scope to build such models as 
part of the ongoing deliberate planning for the ADF. Deliberate (long-term) planning at 
the operational level aims to develop plans that can be adapted, when a conflict or 
situation arises, to meet the objectives set out by strategic guidance. While the COG for 
a particular force may change according to circumstance, a relatively fixed network can 
reflect the current force structure and capabilities over a fixed set of critical capabilities 
depending on a fixed set of requirements. The network structure is invariant for a 
range of problems but the conditional probabilities may vary with respect to the 
specific COG being considered.  
 
A knowledge representation framework expressing the invariant functional and causal 
relationships is being constructed for each specific operational capability. This serves as 
a knowledge base expressing generic relationships whose probabilistic strengths may 
be adjusted to tailor each model to a particular situation.  The framework is organised 
in hierarchies of sub networks that reflect generic military categories such as 
Command & Control, Protection, Deployment etc and their underlying requirements. 
They can be combined as required to construct a comprehensive Bayesian net for a 
specific scenario from a library of modular subnets that reflect the hierarchical 
structure and capture the stable patterns of probabilistic relationships. Relevant entity 
data for these models are stored in COGNET as a relational database system. 
 
4.2 The COGNET system and user interface 

The COGNET database provides a framework for representing generic causal 
relationships to aid knowledge reuse and knowledge transfer.  
Figure 4 depicts the COGNET system. Upon entry into COGNET a user can select a 
data-source from those available, each of which may have been created and managed 
by different headquarters (HQ) or organisations. Each data-source consists of three 
main sets of tables defining entities, types and scenarios. The entity tables contain the 
list of entities and their relationships to one another according to the capability models 
developed. The generic model database is structured according to operational-level 
capability categories, which range from standard warfare capabilities such as 
Battlefield Air Interdiction (BAI) to Information Operations (IO). Development of the 
database is ongoing.  
 
The relationships between entities needed to form capability Bayesian networks are 
stored in the database in the form of parent and children associations. In addition, 
country associations can be added to entities or capabilities in the database. For 
example, a country can have BAI (and its appropriate entities) associated with it if it 
has that capability. The ability to tag individual entities with a country association also 
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allows the removal (or addition) of entities from a capability model for that particular 
country. As an example let us consider two countries A and B that are in a situation 
that requires BAI. Let us also consider in this situation that country A has Air-to-Air 
Refuelling (AAR) available and country B does not (AAR allows BAI to be used in 
situations where its operating base is a significant distance from the Area of 
Operations). The remaining entities required for BAI are the same for both countries. In 
COGNET this is implemented by tagging the BAI entity and each of its sub-elements, 
with the exception of AAR, with countries A and B. AAR is only tagged with country 
A. The ability to associate countries with entities in this manner allows several country 
capability models to be generated from a single generic �catch all� model. 
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Figure 4: COGNET System block diagram 
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COGNET includes a graphical user interface (GUI), which allows the user to interact 
with the database easily and efficiently. Figure 5 shows a typical screen shot from the 
COGNET GUI when a user is interacting with a chosen data-source.  The user can 
choose to look at the entire data-source without filtering; or choose to filter by country 
(using the country dialogue box); or by scenario (using the scenario dialogue box). The 
Bayesian network shown in Figure 5 represents an entire data-source without filtering 
(hence the scenario field is <Unspecified> and the country field is <All>). If the user 
has appropriate access they may also add entities and relationships to the generic 
database by creating nodes and links. This is done by right clicking on the screen to 
invoke a pop-up menu and selecting �add-entity� or �add-links�. Each time a user 
selects �add-entity� they are presented with the dialogue box shown in Figure 6 where 
required entity information is entered. Selecting �add-links� invokes the linking tool, 
which allows users to add links from node to node.   All rules of Bayesian Networks 
are still enforced e.g. no cycles. 
 
 

 
 

Figure 5: The COGNET GUI seen once a user has selected a data-source 
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Figure 6: : Window seen in COGNET when adding or editing a node. 

 
4.2.1 Individual and group user views 

The amount and type of model information required by various individuals and 
groups of the planning team differ in both content and detail.  The commander may 
only be interested in the enemy and own perceived centres of gravity and the critical 
capabilities for those COG; while, at the other end of the spectrum, the targeting 
planning group may require more detailed information on a critical requirement to 
determine possible critical vulnerabilities. For example, consider airfields as a critical 
requirement. A breakdown of airfields by the targeting group, such as that shown in 
Figure 7, may show that the true critical vulnerability is the airfields fuel resupply 
system. This, however, is a low-level tactical target and would not normally be of 
direct interest to the Commander. To facilitate the ability for each planning group to 
focus on their area of interest COGNET allows expansion and contraction of parts of 
the network as required. Figure 8 shows the model from Figure 5 but it has been 
expanded in some parts and contracted in others due to the interest of the user. The 
highlighted green node indicates the selected node that has been expanded, in this case 
fighter aircraft capability. Nodes may be expanded (to show one or more levels of 
ancestors) or collapsed (to hide all ancestors) by double-clicking on the appropriate 
child-node. Right clicking on a node and selecting "show-all" expands the node and all 
its ancestors to show its complete structure. 
 



     
DSTO-TR-1604 

   
  17 

 

 
 

Figure 7: Example view of a breakdown of Airfields seen by a targeting planner. 

 
 
4.2.2 Constructing a scenario 

The COG for a particular force may change as the scenario changes but the force 
dependency structure will typically remain the same. This can be represented by a 
relatively fixed causal network, in which only the causal strengths vary according to 
the scenario. Using COGNET it is possible to tailor models to a particular situation 
using the generic framework. For example, a user may create a new scenario by 
importing entities from the generic database with the relevant countries' associations (a  
scenario may have many countries associated with it). The network then consists of 
several subnets of capabilities and requirements from the database for the country of 
interest. For example, if a scenario involves Australia's Force Projection capability it can 
be selected and imported to the workspace from the country selection dialogue box. 
COGNET will then add the Force Projection node and its networked ancestors to the 
required scenario. In the process any duplicate nodes are deleted1 and links are 
rearranged as necessary to retain the causal structure of both the imported network 
and the network under construction. The user can subsequently scan each of the 
capabilities and/or entities and delete the nodes that are irrelevant to that scenario as 
they wish. In addition any other nodes that are only influenced by these deleted nodes 
are also automatically deleted. Alternatively a user may choose to construct a new 
network by selecting separate parts of one or more generic models and adding them to 
the new scenario, which can be saved as a new network for population and analysis. 
Data on dependence parameters of any subnets imported from the database may be re-
examined, in light of the specific problem at hand, in the conditional probability table 
(CPT) generation tool, which is invoked through the CPT tab (Figure 8).  
 

                                                      
1 At present duplicate nodes are assumed to have identical names. Future research will focus on 
naming conventions to simplify this process and on sophisticated database management 
techniques to detect multiple entities by other attributes. 
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Figure 8: Demonstrating the ability to expand and contract in COGNET 

 
 
4.3 Generating the conditional probabilities 

Of course, analysing the COG Bayesian networks is not possible until the model has 
been populated, which involves specifying conditional probability tables (CPT). These 
probabilities can, in principle, be extracted from historical data or elicited from a 
domain expert. So far, we have solely relied on the judgement of domain experts to 
populate COGNET models since there are no appropriate or valid historical data 
available. However, this entails a large cognitive workload resulting in potentially 
inconsistent models. If we consider a two-state node with six parents, each having two 
states, then sixty-four conditional probabilities must be specified for just this network 
fragment. For nodes with more parents, and possibly more states per node, the number 
of distributions to be subjectively assigned by the user increases exponentially. 
Research into this problem has resulted in the development of a tool with a high-level 
user interface and built-in algorithms that generate a CPT with much less cognitive 
effort, particularly for those cases in which time is critical.  
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In the course of our investigations we considered the following algorithms for 
approximating conditional probabilities. The first algorithm is an integral part of 
SIAM, which also performs automatic CPT generation and for much the same reasons. 
SIAM�s CPT generator is based on a purpose-built Causal Strengths (CAST) Logic 
[Rosen & Smith 1996]. In SIAM, domain experts create an influence net of a complex 
situation or scenario and provide information about the cause-effect relationships in 
the model. Using the CAST algorithm, this causal strength information is then 
converted into quantitative approximations of the conditional probability values 
required for analysis of the model.  The CAST algorithm significantly reduces the 
number of inputs required to populate these nets, as does the algorithm developed for 
Noisy-OR or disjunctive interaction models [Pearl 1988; Jensen 2001]. The latter class of 
models is used to represent events and their causes as binary variables. They need to 
satisfy two main assumptions: the first requires that if all causes of a certain event are 
false then so is the event itself; the second requires that all inhibitors of a certain event 
must be mutually independent. The assumptions required for Noisy-OR models and 
for the influence nets in SIAM were considered too restrictive for our purposes.  
 
The algorithm we have adopted so far implements a weighted sum technique and is 
fully described in a separate paper [Das 2004]. Briefly, this algorithm reduces the 
cognitive load required to generate the CPT by allowing the user to consider the effects 
on the child node for each parent node in-turn, which reduces the input to be specified 
by the user. The first step in the weighted sum technique is to define a probability 
distribution matrix for each parent-child combination. Next, the user is asked to 
consider the importance of each parent node on the child node in terms of relative 
weights. Thus, if a critical requirement A is considered to be twice as important to 
capability C as critical requirement B it is assigned twice the weight. The weighted sum 
algorithm generates conditional probabilities from the relative weights and the 
probability distributions. For example, if a node has six parent nodes the algorithm 
reduces the number of probabilities that need to be specified from 64 (26) to 12 (2×6) by 
automatically generating 64 probabilities from the six weights and the twelve 
probability distributions assigned. The CPT generator in COGNET also requires the 
user to specify whether a set of parent nodes (possibly a singleton) is critical to the 
child node under consideration:  a subset of parent nodes is defined to be critical to a 
child if the latter is totally dependent on it. In this case all conditional probability 
entries for which P[child = weak|all nodes in the critical parent [set] = weak] are 
automatically set to 1, regardless of the given state of the rest of the parent nodes.  
 
This algorithm does not restrict us to three-state nodes; it can handle any number of 
states and the number of distributions to be specified grows linearly, rather than 
exponentially, with the number of states. The algorithm also makes it easier to ensure 
that the conditional probabilities are consistent, in the sense that two probabilities do 
not contradict each other: for instance, the subset of an event having a higher 
probability than the event itself. Once the CPT has been generated the user may then 
test it with the COGNET model verification tool. 
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Figure 9: Example of COGNET CPT utility 

 
The CPT generator interface used in COGNET is shown in Figure 9. When a user 
selects a node (such as CAP shown in Figure 9) while in the CPT generator utility a list 
of its parents appears in the upper left corner of the utility. Next to each parent name is 
a slider bar, which is used for assigning weights that are needed for populating the 
CPT using the algorithm described above.  In addition to the weights the user must 
also assign the probability distributions and criticality information, also required for 
population, under each of the tabs next to the weights tab (see Figure 9). Once a user 
has populated the fragment they can then tick the populated check box, which will 
change the indicator dot on the node from red to yellow (as can be seen in Figure 9). 
This gives the user a quick check as to which fragments have been populated and those 
that have not. Once all fragments are populated model evaluation can be undertaken. 
 
4.4 Model evaluation 

Model checking is an essential part of Bayesian analysis. It is the general procedure for 
comparing final conclusions with our knowledge of reality. There are two aspects of a 
Bayesian net that need to be assessed. First we need to be confident that the topology is 
a true representation of the system being modelled. Are all significant variables present 
and have all relevant relationships been captured? Once we are confident of the model 
structure we need to determine the sensitivity of the marginal probabilities to changes 
in the initial distributions. It is important to investigate the level of accuracy of the 
numbers required for a probabilistic model and the extent to which their inaccuracy 
affects its output. We would also like to know whether the probabilities assigned to 
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these nodes reflect reality. The latter might have to be a subjective assessment based on 
the judgement of a domain expert.  
 
Initial probabilities describe our current belief of the likelihood of each possible state of 
the initial or leaf nodes. In order to understand how these numbers contribute to our 
probability of interest we would like to be able to rank these nodes in terms of the 
impact they might have on the probability of interest. This can be done in COGNET by 
invoking the relative impact analysis function. Obvious errors of judgement or 
inconsistencies should be discovered if the ranking order defies understanding, for 
example, if the relative impact analysis assesses ground-based radar to have a much 
larger effect on the red COG than POL in our scenario. A better understanding of 
sensitivity to inaccuracies in a probabilistic network helps determine the sets of 
probabilities that are most sensitive. The relative sensitivity of these numbers can help 
the modeller decide how much effort is worth investing into probability assessment 
[Henrion et. al. 1996]. 
 
The empirical approach to sensitivity analysis of a probabilistic network entails 
varying the probabilities systematically and recording the affects on a particular 
probability of interest [Coup, et al. 2000]. We may also take an analytical approach and 
investigate sensitivity by expressing the probability of interest as a function of the 
parameter being varied [Kipersztok and Wang, 2001]. Such an approach is illustrated 
in [Laskey, 1995], in which sensitivity values are defined as the partial derivatives of the 
probability of interest with respect to the conditional probabilities being varied. These 
values measure the sensitivity of the model outputs to small changes in model inputs, 
thus enabling automatic computation of model sensitivity.   
 
Another analytic method is illustrated in [Castillo et. al., 1997]. They represent initial 
probabilities as well as conditional probabilities as symbolic parameters instead of 
actual numbers and present an algorithm for expressing the probabilities of interest as 
algebraic functions of these parameters. They present an earlier result that the prior 
marginal probability of any node in the network is a polynomial function of the 
parameters. The degree of the polynomial is less than or equal to the minimal number 
of parameters or nodes but it is a first-degree polynomial with respect to each 
parameter. Once new evidence is injected into the network, the posterior marginal 
probability of any node is a ratio of two polynomial functions of the parameters such 
that the denominator is the same for each node and does not need to be explicitly 
computed each time. They exploit the dependency structure of the network to 
eliminate those variables that do not contribute to the polynomial function under 
investigation, thus making the computation more efficient and more feasible. They are 
also able to calculate lower and upper bounds for all the marginal probabilities.   
 
These analytical methods enable an efficient analysis of the whole network compared 
to the computationally intensive empirical approach. However, they are not 
appropriate for military users, whose expertise is in the system being modelled rather 
than the underlying mathematics. Our approach aims to build a model-checking tool 
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that exploits the structure of COGNET models and can be easily used by a decision 
maker who is not necessarily an expert in Bayesian modelling techniques. It performs 
empirical rather than analytical sensitivity analysis and is better described as an 
informal process of interactive verification according to the modeller�s intuition rather 
than a systematic evaluation of the model�s statistical properties [Gill, 2002]. This is 
justified by the fact that these probabilities are determined from expert judgement 
rather than statistical data. Although it would be helpful to have a better 
understanding of the relative sensitivity of the conditional probabilities our motivation 
for model evaluation is to increase the users� confidence in their model and to make the 
consequences of their subjective assumptions clear. We aim to encourage military users 
to verify that analysis results match their knowledge of the environment being 
modelled.  
 
The model checker is invoked through the COGNET user interface.  The user steps 
through the model, in a top-down or bottom-up approach, populating each fragment (a 
child node and its parents). Once the CPT of a fragment is complete the model checker 
performs relative importance analysis on the fragment with the node of interest set as 
the child node. If the analysis results do not match the user�s judgement, they may 
pursue iterative refining of the weights, dependency matrices, critical node information 
or individual conditional probability table entries until the model verification output is 
satisfactory.  The software requires the user to manually register the fact that each 
fragment has been populated and checked before impact analysis of the whole network 
is allowed. 
 
4.5 Impact analysis 

Although constructing a graphical representation of the COG and its underlying 
capabilities and requirements helps to clarify thinking and provides a useful way to 
record this thinking, the real power of using Bayesian nets for COG analysis lies in the 
resulting capability to perform impact analysis, that is, to determine the actions that 
would achieve a desirable end-state. In this case a desirable end-state is to degrade the 
enemy�s COG while protecting our own. 
 
Impact analysis allows the user to investigate the potential impact that the modelled 
capabilities have on the enemy (or own) COG. COGNET models show the causal link 
between the result of an action, such as a degraded military capability, and the 
resulting effect on the state of the COG. This provides a measure of effectiveness of 
planned actions as well as an assessment of possibly undesirable side effects. We define 
such a measure of effectiveness as the change in the marginal probability that the COG 
is in its strongest state, as a result of the change in state of any one of the leaf nodes. For 
example, in our example network of Figure 3, we might compare the probability, 
P(COG = �strong�|all leaf nodes are �strong�) to P(COG = �strong�|POL = �degraded� and 
all other leaf nodes are �strong�) and consider this as the impact of POL on the COG.  
Similarly, an assessment of the weakening of the friendly COG as a result of the same 
action by the friendly force can be made in the same way. For example, as a result of 
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striking enemy fuel stocks the friendly force might lose one or more strike aircraft. In 
order to measure the effect this would have on the friendly COG we might compare 
P(Friendly COG = �strong�|all leaf nodes are �strong�) to   P( Friendly COG = 
�strong�|Strike Acft Capability = �degraded� and all other leaf nodes are �strong�). 
 
The current version of COGNET, which has been designed on the basis of our 
observations of operational-level planning, assumes that the node states are ordered 
from strongest to weakest (or vice-versa) and the analysis is based on this assumption. 
Future requirements might necessitate implementation of more flexible analysis to 
accommodate other users (e.g. intelligence analysts or target systems analysts). The 
COGNET impact analysis tool currently provides the following types of analyses. 
 
Base case analysis: Propagate initial distributions and/or available evidence and 
observe the base case probability values for the node of interest, which may be the 
COG or a capability node of particular interest. Alternatively, in order to plan for a 
worst-case scenario, assume all leaf nodes in the adversary COG model are in strongest 
state and let this be the case for analysis. The user may stipulate what the base case 
should be. 
 
�What if� analysis: Conduct exploratory testing through �what if� analysis by 
instantiating selected leaf nodes to the weakest state (or any other state as required) 
and observing how the probabilities of the higher-level capabilities and the COG itself 
change, as shown in Figure 10. This is currently the most flexible type of analysis but 
also the most tedious, particularly for large networks. 
 
Evidence-based analysis: Instantiate leaf nodes with new evidence and re-calculate 
distributions of all other nodes. If evidence on an intermediate node is available this is 
also instantiated but all links from this node to its ancestors are deleted so that it 
becomes a leaf node. 
 
Relative impact analysis: Instantiate each leaf node to its weakest state in turn, observe 
effect on node of interest when compared to the selected base case results. 
 
 
This analysis has been automated in COGNET so that a user can generate a list of leaf 
nodes ordered by the potential effect on the node of interest. Figure 11 shows an 
example of relative impact analysis results generated by COGNET. In this example, 
COG is the node of interest and the base case assumes that the leaf nodes are initially in 
their strongest state. The bar chart to the right of Figure 11 shows the initial nodes that 
have the greatest effect on the COG. The operator, after analysis, has the option of 
saving the results to file for presentation.  
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Figure 10:  The effects of targeting certain critical requirements 

 
The following sections describe the analysis algorithm currently implemented in 
COGNET. In the techniques described below, the user must first select the node they 
wish to impact, which may be the COG itself. The user must then select the leaf nodes 
that they want to investigate. The selected nodes being the ones they wish to analyse in 
terms of the impact they are likely to have on a particular node, which we will call the 
impacted node.  
 
4.5.1 The relative impact analysis algorithm. 

The analysis shown in Figure 11 was obtained using a relative impact analysis 
technique, which is undertaken by the following method: 

1) All leaf nodes are instantiated to their strongest state. 
2) The marginal probabilities for the impacted node are re-calculated to find the 

initial base case probability Br. This gives the probability of the impacted node 
being in its strongest state. 

3) All selected nodes are then, in turn, instantiated to their weakest state and all 
other nodes left in the previous settings of step 1. 

4) The probabilities are then propagated through to find the revised probability, 
Ni, of the impacted node due to the change in the selected node i. The impact is 
calculated from the % difference from the base case i.e. 

100×=  
B
NB

i irnodedegrading  fromresulting  impact Relative . 

5) The algorithm continues through all selected nodes in this way until all have 
been analysed and then the results are sorted according to the relative impact. 
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The relative impact analysis algorithm gives a best-case scenario for effect on 
possible targeted nodes. That is it gives the largest possible impact that can be 
achieved against a state of greatest strength. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 11: The relative effect of targeting certain critical requirements 

 
4.5.2 Dealing with unknown entities and validated data 

The relative impact analysis algorithm is useful at the initial planning stages  - it is, in 
fact, a type of automated �what-if� analysis, in which one assumes that all adversary 
capabilities are at their strongest at the beginning of a conflict. Once evidence is 
available, whether this takes the form of uncertain evidence based on an analyst�s 
subjective beliefs or hard evidence from reliable intelligence feeds or Battle Damage 
Assessment (BDA), they can be injected into the leaf nodes in order to determine the 
marginal probabilities of all the other nodes in the network. In cases where evidence or 
estimates are not available or are at best sketchy, analysis with unknown and validated 
states may be of use.  However, if the evidence for an initial node is unknown then the 
probability mass is apportioned among its states. For example in a two-state system if a 
user selects a node and tags (by right clicking on the node) it as unknown the 
probability would be set to 50% strong/50% weak. In future we could consider adding 
an �unknown� state to each node in order to represent explicitly a lack of intelligence 
on the state of a node [Das and Davies 2002]. If evidence for an initial node is validated 
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the user can also tag the node with validated evidence e.g. "weak" or "unavailable". 
This will then set that node to that state for the complete analysis.  
 
4.5.3 Impact analysis with combinations 

Impact analysis using singular nodes for analysis enables a user to answer "what if" 
questions regarding the degrading of singular nodes. The user can then use the results 
that are output to formulate a possible line of operations. However, while this 
approach allows the user the confidence that they will indeed (under their reasoning) 
degrade the COG by this possible line of operation it does not inform the user of the 
outcome of targeting combinations of nodes. Let us consider a simple example. If the 
impact analysis results indicated that the two entities that had the most effect on the 
COG were fighter aircraft and fighter pilots as they both contribute to fighter aircraft 
capability then it would be redundant to target both these entities in a line of operation, 
as it would have the same effect as targeting them singularly. Therefore, the COGNET 
impact analysis utility also incorporates the ability to analyse entities in combination. 
This system is identical to that previously described above but simply calculates 
impact for all combinations for the number of entities in combination specified by the 
user. The results are then sorted according to the total impact. The combinations toggle 
box can be seen in the left hand corner of Figure 11.  
 
4.5.4 Impact analysis with intermediate states (or degraded states) 

The relative impact analysis techniques described thus far also allow for investigation 
with intermediate states. To allow more flexibility in analysis with intermediate states 
COGNET allows the user to define, once they have selected one of the above 
algorithms, the state that they wish to use for analysis. For example if a model uses the 
three state system of "strong", "degraded" and "unavailable" the user may select to run 
the impact analysis using the degraded state instead of the unavailable state. Of course, 
this assumes that all nodes in the network have a uniform number of identically named 
states. 
 

5. Compiling Large Complex Networks  

5.1 Complex COGNET Networks 

The Bayesian engine component of most software packages for Bayesian networks 
relies on efficient inference algorithms for probability updating. There are two classes 
of inference: exact and approximate. We are interested in the former, which (in 
principle) enable us to calculate marginal probabilities for each variable in the network. 
HUGIN uses an exact algorithm based on the construction of a junction tree of the 
triangulated graph derived from the directed acyclic graph representing the Bayesian 
network. These algorithms are complex and computationally intensive but are 
currently the most efficient method for exact probability updating in Bayesian 
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networks. Other exact algorithms exploit algebraic schemes for variable elimination 
without using graph theoretic concepts. However, these algorithms can only compute 
marginal probability values for a given subset of variables [Cozman 2000].  
 
 

 
 
 

Figure 12: A more comprehensive COGNET model 

 
The integration of generic subnets into a COGNET model makes them comprehensive 
but very large and complex, significantly larger than the networks we have shown so 
far. Although there is no problem with compiling large two-state networks we 
experienced some compilation problems when we started converting our models to 
three-state nodes in order to enable more detailed analysis. The exponential increase in 
memory requirement has meant that some of our more comprehensive networks 
cannot be compiled. Such a three-state network is shown in Figure 12. Looking at the 
structure of this COGNET model it is not difficult to understand why: many of the 
nodes have 5 or 6 parents and quite a few of these parent nodes have several children. These 
types of networks result in large junction trees, whose nodes are composed of large cliques 
(maximal subgraphs, all of whose nodes are pairwise linked). The HUGIN heuristic 
determines that the junction tree for this network will have 123 cliques, the smallest of 



 
DSTO-TR-1604 
 

 
28 

which has 3 members and the largest has 18 members. Memory storage space for each 
clique grows exponentially with the number of members and the number of states per 
member. As a result the total clique cost is 621,060,111, requiring approximately 2.5 
Gbytes of memory. See [Falzon 2003] and references therein for a description of the 
theory behind junction tree algorithms and details of the HUGIN inference 
propagation algorithm.  
 
Fortunately there are ways to exploit the structure of COGNET models to make 
compilation of large three-state networks possible, provided we are only interested in 
forward propagation. Using the definition of d-separation [Pearl 1988; Jensen 2001], we 
can see that it is quite easy to separate a typical network into independent sub-
networks that can be compiled separately. The network in Figure 2, for example, 
can be easily separated into 4 subnetworks as follows. One subnetwork, call it the high-
level subnet in the rectangular frame in Figure 13, would consist of nodes COG, CC_1, 
CC_2 and CC_3; the other three would each consist of one of the CC nodes and all its 
ancestors (one of these networks is highlighted in Figure 13). The latter three subnets 
are d-separated if the leaf nodes are the only ones instantiated. Once these nodes have 
been instantiated, the three subnets can be compiled separately giving the marginal 
probabilities of the CC nodes, which are the bottom-level nodes of the high-level 
subnet; and forward propagation determines the marginal probabilities of the rest of 
the network. Larger, more complex networks can be handled in the same way 
provided the rules for d-separation are upheld.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 13: Compiling separate networks 

 
 
Another aspect of COGNET models we can exploit is the fact that these are essentially 
causal networks, in which �interventions� can be represented by deleting links 
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from the node whose state is altered by the intervention to all its parents. From the 
definition of Causal Bayesian Networks [Pearl 2001, Section 1.3.1], since the underlying 
relationships are causal (e.g. if a critical capability is �destroyed, captured or 
neutralised it will significantly undermine� the COG [ADDP 5.0.1 2002]), we can 
represent external or spontaneous changes as follows. Suppose we wish to investigate 
how neutralising the critical requirement represented by A_7 impacts on the COG. We 
represent this in the network by instantiating A_7 with this evidence and effectively 
deleting the links from A_7�s parents to it; thus turning A_7 into a leaf node. By doing 
so we are reflecting the fact that since we know the state of A_7 we are no longer 
interested in the effect other nodes might have on it. We propagate this evidence 
through the rest of the network to see the effect on the nodes of interest, typically the 
COG. 
  
As explained earlier, critical capability analysis attempts to determine the potential 
impact that the lower-level nodes have on the higher-level nodes rather than 
attempting to infer the converse. In other words, leaf node probabilities or evidence is 
propagated through the network to the nodes of interest higher up in the hierarchy. 
This type of analysis does not require inference to be made about the states of the leaf 
nodes from evidence gathered about high-level capabilities. For this reason the 
compilation methods described above are adequate. There might be other sorts of 
analyses, perhaps during the execution of a plan, in which such inference is required, 
mandating backward propagation of evidence. In this case the full capability of the 
HUGIN inference engine can still be used, provided the network size is suitably 
decreased, either by deleting nodes and links or by decreasing the number of states per 
node. Both these adjustments can be made easily in COGNET. 
 

6. Conclusion 

A thorough understanding of the relationships between a COG and its underlying 
critical capabilities and requirements is crucial to the development of a sound military 
plan. The relationship structure is often complex and not always easy to determine. 
The COG Network Effects Tool goes a long way to facilitate this task and it provides an 
effects-based analysis capability. COGNET uses existing planning process concepts to 
create a knowledge framework, which fits directly into ADF planning doctrine. The 
network representation of COG analysis facilitates reasoning and enhances shared 
understanding of complex situations. In addition, probabilistic models ensure that 
uncertainties and subjective judgements are clearly represented. It provides a generic 
models database to facilitate the construction of comprehensive models and enable 
future re-use and traceability and has provision for compiling large complex networks. 
Its graphical user interface and the suite of tools it provides (for CPT generation, 
impact analysis and model checking) have been specially designed for military users, 
whose expertise is in the system being modelled rather than the underlying 
mathematics. 
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An important aspect of this work is integrating COGNET into the ADF planning 
process [Priest et al. 2002]. Operational planning instructors from the ADFWC, as well 
as practising operational planners, have been involved, since the inception of the 
project, in the conceptual development in order to ensure that the philosophy 
underlying the models is compatible with ADF doctrine and the planning process. The 
instructors have formed a major part of our domain expert pool, and have contributed 
to populating the generic models. We have also involved operational planning 
students during week-long planning exercises. Apart from the obvious benefit of 
having future planning officers become familiar with COGNET, trials of the tool also 
provide us with instant feedback of the performance and utility of the tool in realistic 
conditions and contribute to its evolution. During these trials the students are able to 
validate their analysis and review their lines of operation obtained through the JMAP. 
Observations demonstrate that use of the tool reinforces the requirement to maintain 
the link between critical capability analysis and course of action development. 
Introduction of COGNET to real-world planning groups is programmed once the 
robustness of the tool is validated over time. COGNET has been designed with 
operational-level concepts in mind, and therefore assumes that nodes and node states 
represent high-level capabilities. Future trials with Target Systems specialists and 
Information Operation planners will no doubt lead to further modifications as 
required. However, the conceptual foundation of the tool as described in this report 
has thus far withstood significant intellectual scrutiny. 
 
Future research will include: linking results from the critical capability analysis 
conducted during mission analysis to the next step in the planning process in which 
COAST is used to derive a feasible line of operations from a sequence of tasks; using 
results from impact analysis in COGNET to measure the potential effectiveness of a 
sequence of tasks for plan refinement in COA-Sim; and deriving probabilities to 
populate COGNET models from results obtained in simulation runs of COA-Sim. 
These research proposals are based on the well-founded premise that the conceptual 
framework underlying COGNET and the other planning tools in In-MODE all serve to 
clarify the logical link between the essential tasks and the defined objective, defined as 
negating the threat COG while maintaining our own.  
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