
Tutorial 1.  Building a Bayesian Network 

This tutorial shows you how to implement a small Bayesian network (BN) in the Hugin GUI. The BN you are about to 

implement is the one modelled in the apple tree example in the basic concepts section. In the next tutorial you will extend 

this BN to an influence diagram. 

The qualitative representation of our BN is shown in figure 1. 

 

Figure 1: BN representing the domain of the apple tree problem. 

If you want to understand the design of this BN you should read about it in the basic concepts section. 

Constructing a New BN 

When you start up the Hugin GUI, the edit window opens. This window contains a menu bar, a tool bar and a document 

pane. In the document pane, a new empty network called "unnamed1" is automatically opened in a network window (see 

figure 2). It starts up in "edit" mode, which allows you to start constructing the BN immediately (the other main mode is 

"run" mode which allows you to use the BN). 

 

Figure 2: The network window containing a tool bar, a node edit pane, and a network pane. 

Adding Nodes 

The first thing we will do is add the Sick node. This can be done as follows: 

 Select the discrete chance tool in the tool bar of the "unnamed1" network window (see figure 3) 

 Click somewhere in the network pane (see figure 2) 

  

http://www.hugin.com/technology/getting-started/bns
http://www.hugin.com/technology/getting-started/bns


When you have clicked in the network pane, the node "C1" appears. We want to change this label to "Sick": 

 Select the node using the mouse 

 Enter "Node Properties" by pressing the node properties tool (see figure 3) 

 Change both "Name" and "Label" fields to "Sick" 

 Press "OK"  

The "Name" is the internal name of the node, while "Label" is the label of the node. If no label is specified (as was the 

case before you changed the label) the label used is the internal name. The internal name can consist of only the letters 

a-z and A-Z, the digits 0-9, and the underscore character _ whereas the label can be almost anything. 

 

Figure 3: From left: The discrete chance tool, the node properties tool, and the causal arrow tool. 

The Dry and Loses nodes are added the same way. You can add more nodes without having to press the discrete 

chance tool all the time by holding down the SHIFT key while clicking in the network pane. When you have chosen a 

node in the network pane you can access the node properties tool by holding down the right mouse button. 

 

Figure 4: The network pane contains the three nodes Sick, Dry, and Loses that have been added to the BN. The node edit pane 

contains the CPT of the currently active node. 

Adding Causal Arrows 

Now, you should have a BN similar to the one shown in the network pane in figure 4. To add the causal arrows from Sick 

to Loses and from Dry to Loses, do as follows: 

 Press the causal arrow tool (see figure 3) 

 Drag an arrow from Sick to Loses with the left mouse button while holding down the SHIFT key. The SHIFT key 

ensures that you can add more arrows without having to press the causal arrow tool again 

 Drag an arrow from Dry to Loses with the left mouse button 

What you have by now should be the complete qualitative representation which is similar to the one in figure 1. The next 

step will be to specify the states and the conditional probability table (CPT) of each node. 



The States 

In the introduction to BNs the states of the nodes were specified as follows: Sick has two states: "sick" and "not", Dry has 

two states: "dry" and "not", and Loses has two states "yes" and "no". 

First, we shall tell you how to specify the states of Sick: 

 Choose the Sick node as the currently active node by selecting it from the drop down list below the tool bar or 

simply by double clicking it 

 Press the add state tool in the tool bar (see figure 5) 

 Click the field containing the text "State 0" in the cpt in the node edit pane 

 Type the text "sick" in the field to give the state this name 

 Click the field containing the text "State 1" in the CPT 

 Type the text "not" in the field 

Now, do the same with Dry. 

 

Figure 5: The add/delete state tools. 

You can do exactly the same with Loses, but you might be a little surprised when selecting Loses as the active node 

because the CPT of Loses is a little bigger than those of Sick and Dry. This is just because Loses has parent nodes 

(which Sick and Dry have not). 

 Add a state to Loses and name the two states "yes" and "no". 

Entering CPT Values 

The next step is to enter the CPT values correctly (as default the Hugin GUI has given all nodes a uniform distribution). 

The values were specified in the introduction to BNs and they are shown in table 1, 2, and 3. 

Sick="sick" Sick="not" 

0.1 0.9 
 

Table 1: P(Sick). 

Dry="dry" Dry="not" 

0.1 0.9 
 

Table 2: P(Dry). 

  Dry="dry" Dry="not" 

Sick="sick" Sick="not" Sick="sick" Sick="not" 

Loses="yes" 0.95 0.85 0.90 0.02 

Loses="no" 0.05 0.15 0.10 0.98 
 

Table 3: P(Loses | Sick, Dry). 

First, enter the values into the Sick node: 

 Choose the Sick node as the currently active node 

 Click the field representing Sick="sick" 

 Enter the value 0.1 (from table 1) 

 Click the field representing Sick="not" 

 Enter the value 0.9 (from table 1) 



Enter the values of Dry and Loses the same way. When you enter the values into the CPT of the Loses node, be careful 

to get it done right. When you have entered all CPTs, the network window should look like figure 6. 

 

Figure 6: The document window with Loses chosen as currently active node. The CPT of Loses is seen in the node edit pane. 

This finishes the construction of the BN. At this point it would be a good idea to save the BN. Here is how to do it: 

 Select "Save As" from the "File" menu 

 Enter a name (e.g. "apple.hkb") 

 Press "Save" 

Now we have finished constructing the Hugin knowledge base using Bayesian network technology. Now we want to 

compile and run the Hugin knowledge base and see if it is behaving correctly. 

Building a Bayesian Network (Continued) 

Compiling the BN 

Now it is time to compile the network and see how it works: 

 

Figure 7: The run mode tool button 

The compiler checks for the following errors: 

 Cycles. There must be no cycles in a network (whether or not there is a cycle does not depend on the directions 

of the arrows) 

 For each parent configuration of a node the probabilities of the different states must have the sum of 1. In other 

words, each column of the table must sum to 1. If there is a column that does not sum to 1, the compiler will 

normalize the values. This fact can be utilised when filling in the node properties. Say, for example, that the 

probability of a tree being sick is based on the observation of 13527 trees over one season, where 1678 got sick 

and the rest didn't. Instead of first calculating the fractions, you just put 1678 in the sick state of the Sick node, 

and 11849 in the no state. The compiler will then calculate the proper values of probability 



If you have followed the guidance of this tutorial, there should not be any errors in the compilation process. The 

compilation should be finished very fast with a small BN like ours. After the compilation, the "run" mode is entered (so far 

you have only been working in "edit" mode). 

Running the BN 

Running in "run" mode, the network window is split into two by a vertical separation (see figure 8). To the left is the node 

list pane and to the right is the network pane. 

 

Figure 8: The network window in "run" mode. To the left is the node list pane (having Loses and Sick expanded) and to the right is the 

network pane. 

You can view the probabilities of a node being in a certain state by expanding the node in the node list pane. You expand 

a node by double clicking it in the node list pane (if you click on the small node icon in the node list pane, you only need 

to click it once). Now, expand Loses and Sick: 

 Double click Loses in the node list pane 

 Double click Sick in the node list pane 

You can also expand all nodes at once by pressing the expand node list tool in the tool bar just to the right of the node 

properties tool. 

Is the tree sick? 

Now imagine that you want to use your BN to find the probability of an apple tree being sick given the information that the 

tree is losing its leaves. This is done as follows: 

 Expand all nodes (by pressing the expand node list tool) 

 Enter the fact that the tree is losing its leaves by double clicking the state "yes" of the Loses node 

 Propagate the BN by pressing the sum propagation tool in the tool bar (see figure 9) 

 Read the probability of Sick being in state "sick" 

 

Figure 9: The sum propagation tool 

This should give the output shown in figure 10. 



 

Figure 10: Our BN after entry of evidence that the tree is losing its leaves and sum propagation 

The probability of the tree being sick is now 0.49. 

If you do not read the value specified above, you have probably mistyped something when filling in the CPTs.  Check the 

CPTs of all the nodes. 

The Monitor Windows 

In the last section, you used the node list pane to enter evidence and retrieve beliefs. You can also do this by using the 

monitor windows. The monitor windows show the same information as the node list pane, but you have the opportunity to 

place the monitor windows near the corresponding nodes of the BN in the network pane. You can open a monitor 

window for each node in the network pane, but the best way to use them is probably only to open a monitor window for 

the nodes in the BN which has special interest, otherwise they might take up too much space. 

Now we shall open monitor windows for Sick and Loses and repeat the calculations from before. First, initialize the BN: 

 Press the initialize tool button (to the left of the sum propagation tool) 

Then we are ready to open the monitor windows of Sick and Loses. 

 Select Sick and Loses (hold down the SHIFT key to select more nodes at the same time) 

 Choose "Show Monitor Windows" from the "View" menu 

 

Figure 11: Monitor windows of Sick and loses are now shown in the network pane 



Now you know all you need to know to continue to the second tutorial showing you how to construct a Hugin knowledge 

base using influence diagrams. The rest of this first tutorial introduces some useful aspects of the Hugin GUI, but can be 

skipped. 

The most Likely Combination 

From the propagation in the previous section we could see that the probability of the tree suffering from drought is 0.47. 

In both the case of Sick and Dry it is more likely that the state is "not". This could make one believe that the most likely 

combination of states is when both Sick and Dry are in state "not". However, this is a wrong conclusion. If you want to 

find the most likely combination of states in all nodes, you should use max propagation (instead of sum propagation). 

The max propagation tool is found on the tool bar just to the right of the sum propagation tool. 

Now try to press the max propagation tool. In each node, a state having the value 100.00 belongs to a most likely 

combination of states. In this case, this gives one unique combination being the most likely: Sick is "sick" and Dry is "not" 

We see that even if Sick="sick" is less likely than Sick="not", Sick="sick" is contained in the most likely combination of 

the states of the nodes while Sick="not" is not. This illustrates that you need to be careful about the conclusions you 

make from the result of a propagation. 

Now one might want to know the probability of this most likely combination of states (or of any other combination of 

states) under the assumption that the entered evidence holds. 

Calculating the Probability of a Combination of States 

Here, we shall describe a technique to calculate the probability of the most likely combination of states given the 

evidence that the apple tree is losing its leaves. This probability is written: 

P(Sick="yes", Dry="not" | Loses="yes") 

Any time you perform sum propagation in your BN, the probability of the entered evidence is shown in the lower left 

corner of the HUGIN Runtime window (the P(All) value). If you have chosen the "yes" state of the Loses node and 

performed sum propagation, you can read the probability of Loses="yes" (written P(Loses="yes")). This value should be 

0.1832. 

The technique uses the following rule from probability theory (known as the fundamental rule): 

P(A, B) = P(A | B) P(B) 

The only kind of probability we can get from HUGIN is the probability of a series of bits of evidence which can be written 

in the form: 

P(A1, A2,..., An) 

We use the fundamental rule to rewrite our requested probability to some expression composed by such components: 

P(Sick="yes", Dry="not" | Loses="yes") = P(Sick="sick", Dry="not", Loses="yes") / P(Loses="yes") 

In the fundamental rule, we have divided both sides with P(B). Then we have substituted A with Sick="yes", Dry="not" 

and B with Loses="yes". 

We already know P(Loses="yes") so we only need to calculate P(Sick="sick", Dry="not", Loses="yes"). This is done as 

follows: 

 Enter Sick="sick", Dry="not", and Loses="yes" in the BN 

 Press the sum propagation tool 

 Read P(Sick="sick", Dry="not", Loses="yes") as the P(All) value in the lower left corner 



This value should be 0.081. Now, we are ready to calculate the requested probability: 

P(Sick="yes", Dry="not" | Loses="yes") = 0.081 / 0.1832 = 0.442 

Therefore the probability of the most likely combination of states of Sick and Dry, given that Loses="yes", is 0.442. 

This finishes the first tutorial. If you want to learn how to construct a small influence diagram, go on to tutorial 2, Building 

a (Limited Memory) Influence Diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tutorial 2.  Building a (Limited Memory) Influence Diagram 

This tutorial shows you how to implement a small influence diagram in the Hugin GUI. It requires that you have already 

constructed the Bayesian network from the first tutorial. The influence diagram you are about to implement is the one 

modelled in the introduction to influence diagrams in the getting started section. It helps plantation owner Apple Jack to 

decide whether or not to give his apple tree, which is losing its leaves, some treatment. The qualitative representation of 

the influence diagram is shown in figure 1. 

 

Figure 1: The qualitative representation of the influence diagram used for decision making in Apple Jacks plantation 

Open the BN for Editing 

First, you must open the BN constructed in the first tutorial if it is not already open. Here is how to do it: 

 Select "Open" from the "File" menu 

 Enter the name of the BN file ("apple.hkb"). You can do this by selecting it from the list of BN files (which have 

the "hkb" extension). 

In figure 2, the BN has been opened and the Hugin GUI is currently working in "edit" mode. We need to be in "edit" mode 

to edit the BN, so if your network window shows the BN in "run" mode, press the "edit" mode tool button. If you opened it 

in "edit" mode, you do not need to do anything. 

 

Figure 2: The open BN from the first tutorial in "edit" mode. 
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Copying Nodes 

In the influence diagram in figure 1, there are three nodes very similar to those that we already have. In this case, the 

Hugin GUI allows you to copy a group of nodes and paste them in another area of the network pane. Here is how to do it: 

 Create a rectangle selection with the mouse cursor around all three nodes (drag a rectangle by holding down 

the left mouse button) 

 Select "Copy Nodes" from the "Edit" menu in the Hugin GUI window tool bar 

 Select "Paste Nodes" from the "Edit" menu in the Hugin GUI window tool bar 

 Move the new group of nodes to a spot where there is room for them 

The Hugin GUI generates new names and labels for the new nodes. You can keep the names and change the labels to 

Sick', Dry', and Loses' (you cannot use "Sick'" as the name because it contains the prime character which is illegal in 

names). Do you remember how to change the labels?: 

 Select the node with the mouse cursor 

 Enter "Node Properties" by pressing the node properties tool (the left most tool button in the tool bar of the 

network window) 

 Change the "Label" field 

 Press the "OK" button 

You perform the steps above for all three new nodes. Your network should then look as the one in figure 3. 

 

Figure 3: The BN extended with Sick', Dry' and Loses' 

The next step is to add causal arrows from Sick to Sick' and from Dry to Dry'. If you do not remember how to do this, 

these steps will help you create one from Sick to Sick': 

 Press the causal arrow tool 

 Drag an arrow from Sick to Sick' with the left mouse button (while holding down the SHIFT key) 

Holding down the SHIFT key enables you to create more causal arrows sequentially without having to press the causal 

arrow tool again and again. 

 



Adding a Utility Node 

So far, the network we have constructed is still a BN. Now, we shall make the first change making it an influence 

diagram. This change is the addition of a utility node. The utility node we shall add is the Harv node (see figure 1) 

representing the utility gained from the harvest. Here is how to add it: 

 Press the utility tool (to the right of the causal arrow tool) 

 Click somewhere in the network pane (a good place would be in the lower right corner besides the Loses' node 

 Change the name and label of the new utility node to "Harv" 

The harvest depends on the state of Sick' and thus there is an arrow from Sick' to Harv. Add this arrow: 

 Press the causal arrow tool 

 Drag an arrow from Sick' to Harv 

The utility of the harvest was specified to that found in table 1. 

Sick'="sick" Sick'="not" 

3000 20000 
 

Table 1: U(Harv). 

You enter the values of table 1 into the utility table of Harv as follows: 

 Choose the Harv node as the currently active node by selecting it from the drop down list below the tool bar or 

simply by double clicking it 

 Enter the values from table 1 in the utility table in the node edit pane 

A Decision Node and one more Utility Node 

Now, you are about to add the decision node Treat (see figure 1). This is done similar to the way you add chance nodes 

and utility nodes: 

 Press the decision tool (to the right of the utility tool) 

 Click somewhere in the network pane (a good place would be to the right of the Dry node) 

 Change the name and label of the new decision node to "Treat" 

You add an action to a decision node in the same way as you add a state to a chance node: 

 Choose the Treat node as the currently active node by selecting it from the drop down list below the tool bar or 

simply by double clicking it 

 Press the add state tool 

 Change the action names to "treat" and "not" 

The Treat decision node has an impact on the Sick' node so: 

 Add an arrow from Treat to Sick' 

The new decision node represents the decision to give the tree some treatment or not. If the plantation owner (Apple 

Jack) chooses to give treatment this will cost him something which shall be modeled by the Cost utility node. The Cost 

node has the utility table shown in table 2. 

Treat="treat" Treat="not" 

-8000 0 
 

Table 2: U(Cost). 



Now, add the Cost utility node to the influence diagram: 

 Add a new utility node (a good place would be to the right of the Treat node) 

 Change the name and label of this node to "Cost" 

 Add an arrow from Treat to Cost 

 Fill in table 2 in the utility table of Cost 

Filling in CPTs 

When we copied the nodes Sick' and Dry', they inherited the CPTs of Sick and Dry. However, as both these nodes have 

become children of other nodes, their CPTs are no longer correct. Their new CPTs were specified to those found in table 

3 and table 4. 

 Fill in table 3 as the cpt of Sick' 

 Fill in table 4 as the cpt of Dry' 

 Treat="treat" Treat="not" 

Sick="sick" Sick="not" Sick="sick" Sick="not" 

Sick'="sick" 0.20 0.01 0.99 0.02 

Sick'="not" 0.80 0.99 0.01 0.98 
 

Table 3: P(Sick' | Sick, Treat). 

 Dry="dry" Dry="not" 

Dry'="dry" 0.60 0.05 

Dry'="not" 0.40 0.95 
 

Table 4: P(Dry' | Dry). 

Now your (limited memory) influence diagram (LIMID) is finished and it should look like the one in figure 4. At this point it 

would be a good idea to save your LIMID. 

 

Figure 4: The complete influence diagram 



Compiling the Limited Memory Influence Diagram 

You can now try out the LIMID and hopefully you are eager to see how it works. First, compile the LIMID: 

 Press the compile tool (the right most tool button in the network window tool bar) 

The compilation of an influence diagram may produce some of the same errors as described in the first tutorial. If the 

LIMID does not compile, you have probably made some minor error. Once the influence diagram has been compiled, 

probabilities and expected utilities are computed under the initial policy. To solve the influence diagram, it is necessary to 

invoke Single Policy Updating. 

What Should Apple Jack Do? 

When the LIMID has been compiled, you should do a Single Policy Updating. Now, imagine that the only thing Jack 

knows about his tree is that it is losing leaves. Then, what will be the best thing for him to do? To find out this, follow 

these steps: 

 Expand the Loses chance node and the Treat decision node in the node list pane on the left (by double clicking 

them) 

 Enter the evidence that Loses is "yes" (by double clicking the "yes" state) 

 Propagate the influence diagram (press the sum propagation tool) 

 Read the expected utility of "treat" and "not" in the Treat decision node 

You should be reading something looking like that in figure 5. 

 

Figure 5: The influence diagram propagated with the evidence that Loses="yes". 

You read 11514.0 as the expected utility of not doing anything. This suggests that it will be best for Apple Jack not to 

treat the tree. 

This finishes the tutorial. You should now be able use the Hugin Graphical User Interface to construct your own (limited-

memory) influence diagrams. However, creating large and complex models will require a more in-depth study into this 

subject area. 
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Tutorial 3. Structure Learning  

Currently, the Hugin GUI supports two kinds of learning: structure learning and parameter learning. Structure learning is 

the process where the system learns the dependencies between the variables that exist in the data. Parameter learning 

is the task where you fill in the parameters describing the strength of the dependencies in the learned (or built) structure.  

Structure Learning 

Structure learning in Hugin is supported through the PC-algorithm. Consider the data file asia_no_e.dat for the 

ASIA_NO_E network. Figure 1 shows the first few lines of the data file. 

 

Figure 1: The data file 

The structure learning functionality is available under the "File" menu and through the structure learning icon. The 

structure learning icon is shown in figure 2. 

 

Figure 2: The structure learning window 

Click the SL icon and the structure learning window appears. Notice the field "Significance level" which specifies the 

significance level of the statistical independence tests performed during structural learning. Press "Select File" and 

choose a file that will be used to estimate the structure. Then select the "OK" button as shown in figure 3. 

 

Figure 3: The structural learning window 

Pressing "OK" starts the structure learning algorithm. Based on the database of cases given in the file, the structure 

learning algorithm learns the structure of the graph of the Bayesian network. Figure 4 shows the result of structure 

learning based on the asia_no_e.dat file. 



 

Figure 4: The learned Bayesian network graph 

The network graph from which the data file has been sampled is shown in figure 5. When comparing the original network 

graph with the learned network graph, the only visible difference is the link from the "Visit to Asia"-node to the 

"Tuberculosis"-node is missing in the learned network graph. This is due to the fact that the strength of the dependency 

between these two nodes is rather weak. If the "Significance Level Of Dependency Test" factor were set to a higher 

value, this link would most likely be identified as well. However, other (incorrect) links may also be identified if the 

"Significance Level Of Dependency Test" factor is raised. 

 

Figure 5: The Bayesian network graph used for sampling the data file 

Once the structure of the Bayesian network graph is constructed, the conditional probability distributions of the Bayesian 

network can be estimated from data using the EM-learning algorithm, see the EM Learning Tutorial. 
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Tutorial 4.  Parameter Learning / Adaptive Learning 

The Hugin GUI supports two kinds of parametric learning; adaptive learning and EM (batch) learning. 

Adaptive Learning 

Adaptation (adaptive learning) is used to adapt all or some of your conditional probability tables in the knowledge base to 

a new set of data. 

Consider the Bayesian network (BN) shown in figure 1. To learn more about the domain of this BN refer to the section 

samples. 

 

Figure 1: BN Representation of "Chest Clinic" 

Experience table/ tables are necessary to use adaptation. To add an experience table to all discrete chance nodes in the 

domain, click somewhere in the network pane, right click and select "Add Experience Table to All Discrete Chance 

Nodes". It also possible to add experience tables to a subset of discrete chance nodes in the domain. To do the latter, 

select a specific discrete chance node then right click and select "Add Experience Table". 

In our example it is justified to add experience tables to all the nodes in the domain except "Tuberculosis or cancer" since 

this node is a logical or, and no experience can be gained from logical or nodes. To see the created experience table, 

select the desired node and right click then select "Show Experience Table". 

As mentioned earlier, the experience table of a node represents the experience counts of the parent configurations. For 

example, the experience table for node "Dyspnoea?" which is shown in figure 2, represents the number of observations 

of different parent configurations. 

Has bronchitis Yes no 

Tuberculosis or cancer Yes no yes no 

Experience count(s) 0 0 0 0 

Figure 2: Experience Table for “Dyspnoea?” node 

The value zero is an invalid experience count thus the value must be greater than 0 to activate adaptation. If our believe 

of the correctness of the present conditional distribution probability is high then the experience count must have a high 

value otherwise the value of the count should be low. In this case we assume that our believe in the correctness of the 

current conditional distribution is low thus we set the initial experience count to a low number, for instants “10”. Figure 3 

show the initial experience count table for “Dyspnoea?” discrete chance node. 

 



Has bronchitis yes no 

Tuberculosis or cancer Yes no Yes No 

Experience count(s) 10 10 10 10 

Figure 3: Initial Experience Count Table for “Dyspnoea?” discrete chance node 

Note that it is not necessary to activate experience count or enter the same experience count for every parent 

configuration. For instants the initial experience count values can be set to "10,0,100,0". Note that adaptation requires at 

least a node with experience table otherwise it is not possible to adapt the domain. Now add experience table to the 

every node in the BN (except "Tuberculosis or cancer" node) and set the initial experience counts to 10. The domain is 

now ready for adaptation. 

An adaptation step consists of entering evidence, propagating, and finally updating (adapting) the conditional probability 

and experience tables. 

Let’s concentrate on one of the nodes namely "Smoker? The conditional distribution probability of this node prior to any 

adoption is S (0.5,0.5). Now enter the following observations: 

 Node S is in state 0 ("yes") 

 Node X is in state 0 ("yes") 

 Node D is in state 0 ("yes") 

then propagate the evidence. Next push the adaptation button which is shown in figure 4. 

 

Figure 4: The Adaptation Icon 

Keep clicking on the adaptation button a couple of times. Each time the adaptation button is pushed the probability of this 

observation (i.e. P(All)) increases. Now initialize the BN and observe the conditional distribution probability of the 

"Smoker? As you can see the conditional distribution probability is no longer S(0.5,0.5). Actually no conditional 

distribution probability is the same. This indicates that based on the new observations the conditional distribution 

probabilities has been changed. I.e. if the experience tables are now deleted or the values of the experience tables are 

set to zero then the current distribution probabilities will be the new conditional distribution probabilities of the nodes. 

To extend the adaptation with optional fading we need to add fading table to some or all of the discrete chance nodes in 

the BN. To add fading tables to all discrete chance nodes in the BN click somewhere in the network pane, push the right 

mouse button and then choose "Add Fading Table to All Discrete Chance Nodes". To add fading tables to a discrete 

chance node in the BN select the specific discrete chance node then right click and select "Add Fading Table". Note that 

if a node does not have an experience table then it is not possible to add fading table to the node. 

 

 

 

 

 

 



Tutorial 5.  Parameter Learning / EM Learning 

EM (Estimation-Maximization) is a learning facility used for batch learning. Batch learning is "off-line" learning and is 

used to generate  conditional probability tables in the knowledge base from data stored in a database. 

EM Learning 

Consider the Bayesian network from the Tutorial 4. Adaptation. Figure 1 shows the current distribution probability for the 

net. 

 

Figure 1: Current Distribution Probabilities 

Now go back to "edit mode" and set all the conditional distribution probability to 1 except "Tuberculosis or cancer" node. 

Switch back to "run mode" and select the "EM-Learning" icon as shown in Figure 2. 

 

Figure 2: The EM-Learning Icon 

After clicking the icon, the EM learning window appears. Notice the field "Convergence threshold" response to the log-

likelihood. Click "Select File" and choose a file from which conditional distribution probabilities will be computed. After 

selecting the file, the "OK" button appears as shown in Figure 3. 

http://www.hugin.com/technology/tutorials/learning/parameters/adaptation


 

Figure 3: The EM-Learning Window 

Clicking "OK" starts the EM-algorithm. Based on the case set given in the file, the EM-algorithm computes the conditional 

distribution probability for each node. Figure 4 shows the new conditional distribution probability based on asia.dat file. 

 

Figure 4: The New Conditional Distribution Probabilities 

 

 

 

 

 

 

 



 

Tutorial 6.  Working with Object-Oriented Bayesian Networks 

By: Uffe Kjærulff 

This tutorial shows how to implement a small object-oriented Bayesian network (OOBN) in HUGIN GUI. The OOBN we 

are about to construct is the one modelled in the Diseases example in the Basic Concepts section. Two other tutorials 

are available: In the second tutorial we show how to construct the Apple Tree example from the Basic Concepts section, 

and in the third tutorial we will extend this example to an influence diagram. 

The qualitative (or structural) representation of our OOBN is shown in Figure 1. In this tutorial, we shall ignore the 

specification of the CPTs. 

 

Figure 1: OOBN representing the Diseases problem 

If you want to understand the design of this OOBN, you should read about it in the Basic Concepts section. Were we to 

construct this time-sliced network as a BN, we would get the network shown in Figure 2. 

 

Figure 2: BN representation of the Diseases problem 

Creating the Time-Slice Model 

A BN is a special case of an OOBN. What makes a network an OOBN is the existence of instance nodes (i.e., nodes that 

represent instances of other networks). Thus, we start out by creating a new empty network by selecting the "New" menu 

item in the "File" menu. This gives us a new network window containing an empty network called "unnamed ", where x is 

some integer. It starts up in Edit Mode which allows us to start constructing the OOBN immediately (the other main mode 

is Run Mode which allows you to use the OOBN). 

In Figure 2, we observe that each of the three time slices contains four nodes: D1, D2, S1, and S2, where D1 and D2 

represent two different diseases with states "Present" and "Absent", and S1 and S2 represent symptoms that both may 

be observed as consequences of each of the diseases. We shall assume that S1 and S2 represent symptoms with two 

possible outcomes, "Observed" and "Unobserved". As each of the time slices are identical, both at the qualitative (or 



structural) level and quantitative level (i.e., the CPTs are identical, including those that describe the temporal aspect, 

namely P(D1_2|D1_1), P(D2_2|D2_1), etc.), we need only construct a model describing a generic time slice and then 

connect three instances of this network. 

Creating the Nodes 

First, we construct the generic time-slice model, containing the four nodes D1, D2, S1, and S2. The nodes all represent 

discrete chance variables. Therefore, we select the Discrete Chance Tool and create the four nodes by clicking the left 

mouse button at four different locations in the network pane while keeping the Shift key down (to avoid reselecting the 

tool for each node). We then change the default names of the nodes and their default state names using the Node 

Properties pane. Second, we select the Link Tool and create the link from D1 to S1 by dragging the mouse cursor (i.e., 

pressing the left mouse button and moving the mouse cursor while keeping the button pressed) from a point inside D1 to 

a point inside S1 and then releasing the mouse button. Again, we keep the Shift key pressed, and create the other three 

links in the same manner. The result is illustrated in Figure 3. 

 

Figure 3: BN for a single time slice of the Diseases problem 

Output Nodes 

Now, in order for a network for a single time-slice have parent nodes in the immediately preceding network, we need to 

be able to refer to nodes outside the network in Figure 3. In a conventional BN, this is not possible. Thus, as D1 and D2 

are going to be parents of D1 and D2, respectively, in the next time slice, we must declare D1 and D2 as output nodes, 

making them visible outside the network (or rather through instances of the network). 

Input Nodes 

Also, in the network in Figure 3, we should be able to specify the temporal aspect, namely the CPTs P(D1|D1 prev) and 

P(D2|D2 prev), where the nodes "D1 prev" and "D2 prev" are placeholder nodes for D1 and D2, respectively, in the 

immediately preceding time slice. Such placeholder nodes are referred to as input nodes, and shouldn't be confused with 

real nodes. A real node, which is type consistent with an input node, can be bound to that input node. That is, an input 

node becomes identical with the node that is bound to it. However, if an input node hasn't got a binding associated with 

it, the network containing the input node can still be used (i.e., compiled in to a junction tree and used for inference). In 

that case the input node is treated as a real node. That is, each input node has a CPT associated with it just as any 

ordinary node, but this CPT is used only if no nodes have been bound to the input node in a network containing an 

instance of the network in which the input node is defined. 

Input nodes and output nodes are collectively referred to as interface nodes. 

 

 



Creating the Interface Nodes 

Now, let's try to put all this into practice. First, we declare D1 and D2 as output nodes. This is done by clicking the 

"Output" check box in the Node Properties pane for each of them. The color of the D1 and D2 then changes the the 

selected color for interface nodes (as set in the Network Properties pane) to indicate their new status as output nodes. 

To create the two input nodes, "D1 prev" and "D2 prev", we first create two ordinary nodes and set their names to 

D1_prev and D2_prev (and/or their labels to "D1 prev" and "D2 prev"), respectively, in the Node Properties pane. Also, in 

the Node Properties pane for each of these two new nodes, we click the "Input" check boxes to declare them as input 

nodes. Similar to D1 and D2, the color of "D1 prev" and "D2 prev" changes the the selected color for interface nodes. In 

addition, the appearance of the borders of "D1 prev" and "D2 prev" changes from solid to dashed, which indicates that 

they are not real nodes. 

Finally, we create links from "D1 prev" and "D2 prev" to D1 and D2, respectively. The result of these operations appear in 

Figure 4. 

 

Figure 4: BN for a single time slice of the Diseases problem, including specifications of interface nodes 

Creating the Diseases Model 

To create the final Diseases model spanning three time slices, we first create a new empty network (via the "New" menu 

item in the "File" menu). Next, we select the Instance Tool and create three instance nodes by clicking the left mouse 

button at three different locations in the network pane while keeping the Shift key down (see Figure 5). 

 

Figure 5: The network pane contains the three instance nodes that represent three instances of the time-slice model shown in Figure 4 



Each instance node appears as a rectangle with rounded corners. We note that the nodes declared as interface nodes in 

the generic time-slice model appear in each of the instance nodes. The input nodes appear in a row at the top of the 

instance node, and, similarly, the output nodes appear at the bottom of the instance node. 

Next, we need to bind the output nodes of instances DiseasesSlice_1 and DiseasesSlice_2 to the input nodes of 

instances DiseasesSlice_2 and DiseasesSlice_3, respectively. This is done by creating links (via the Link Tool) from the 

output nodes to the corresponding input nodes. The resulting model appears in Figure 6. 

 

Figure 6: The output nodes of an instance are bound to input nodes of another instance using the Link Tool 

Obviously, the model would look nicer if the order of appearance of the input nodes were reversed. If we select the 

Select Tool, we can easily alter the order of appearance of the interface nodes. We move an interface node one position 

to the left (right if the Shift key is down) by placing the mouse cursor on top of the interface node and clicking the left 

mouse button. After reordering the network appears as in Figure 7. 

 

Figure 7: The order of appearance of interface nodes can be altered by simple mouse clicks 

Finally, it is often useful to be able to collapse one or more of the interface nodes in order to hide irrelevant details, 

thereby making the network less cluttered. Again, if we activate the Select Tool, we can collapse (expand) an expanded 

(collapsed) instance node, simply by clicking the left mouse button just outside the node. Alternatively, we can choose 

the "Collapse Instance Nodes" ("Expand Instance Nodes") menu item in the "View" menu, which collapses (expands) all 

instance nodes. 

The OOBN in Figure 7 with the instance nodes collapsed is shown in Figure 8. 



 

Figure 8: The OOBN in Figure 7 with the instance nodes collapsed 

Compiling the OOBN 

Now, assuming the CPTs of the time-slice model in Figure 4 has been filled in (see the tutorial on BNs for details), it is 

the time to compile the network and see how it works: 

 Press the Run Mode tool button in the tool bar (see Figure 9) 

 

Figure 9: The Run Mode tool button 

 For each configuration of parent states in the CPT of a node the probabilities of the different states of the node 

must sum to 1. In other words, each column of the table must sum to 1. If there is a column that does not sum to 

1, the compiler will normalize the values. This fact can be utilized when filling in the probabilities. Say, for 

example, that the probability of D1=Present in the first time slice is based on the observation of 13527 patients, 

168 of whom were observed to have the disease. Instead of first calculating the fractions, you just put 168 in the 

Present state of D1, and 13359 in the Absent state. Then the compiler will calculate the proper values. 

Running the OOBN 

In Run Mode, the network window is split into two by a vertical bar (see Figure 10). To the left is the node list pane and to 

the right is the network pane. 

 

Figure 10: The network window in Run Mode.To the left is the node list pane (with all nodes collapsed) and to the right is the network 

pane 



You can view the probabilities of a node being in a certain state by expanding the node in the node list pane. You expand 

(collapse) a node by clicking its plus (minus) icon in the node list pane. A node can also be expanded (collapsed) by 

selecting (deselecting) it in the network pane. You can also expand (collapse) all nodes at once by pressing the expand 

(collapse) node list tool in the tool bar just to the right of the node properties tool. 

Unlike basic nodes, instance nodes don't have belief monitors associated with them, as they represent entire 

(sub)networks. Instead we must expand the instance node, whereby we get to see the list of nodes of the (sub)network 

that the instance node represents (see Figure 11). 

 

Figure 11: The nodes of the network represented by an instance node, get displayed in the node list pane when the instance node gets 

selected 

For more details on the Run Mode, please see Tutorial 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tutorial 7.  Using the Table Generator 

This tutorial shows you how the table generator functionality can be used to simplify how tables are specified for discrete 

chance nodes. 

Imagine you are playing a game of dice where you roll a number of dice ranging from 1 to 5. The more sixes you roll the 

better, so you are very interested in predicting how many sixes you can expect to roll. 

A very simple Bayesian network can model your situation. Figure 1 shows a Bayesian network where the number of the 

dice rolled (nDice) has an impact on the number of sixes rolled (nSixes). 

 

Figure 1: BN modelling the dice problem 

nDice has states: 1, 2, 3, 4, 5 (the number of dice you could be asked to roll). nSixes has states: 0, 1, 2, 3, 4, 5 (one 

more than nDice since it is possible not to roll any sixes). 

Now, because we want the states of the nodes to represent numeric values, we change their type to "Numbered". 

Explained below is how to change nDice to a numbered node: 

 Select nDice with the mouse cursor 

 Select the "Node Properties" item of the "Edit" menu 

 Select the "Node" tab (if it is not already selected) 

 From the "Type" drop down box select "Numbered" 

 Click "OK" 

Now, change nSixes to be numbered, too! 

You can edit the number of states and the state values in the left most column of the node edit pane (as you probably did 

in Tutorial 1. However, you can also do it through the Node Properties dialog: 

 Select nDice with the cursor 

 Select "Node Properties" from the "Edit" menu 

 Select the "States" tab 

 Click the first state (the only state if you haven't added any states) in the states list 

 Start typing "1" - this should transfer focus to the edit box below the states list 

 Click the "Rename" button in the button list on the right 

 Click in the edit box and type "2" 

 Click the "Add After" button 

 Continue entering the state values (now pressing the enter key after typing a state value should automatically 

use the "Add After" button since this was the last one activated in the button list) 

 After typing all states, press "OK" 

Now do the same for nSixes (remember to start with state "0"). 

Figure 2 shows the Node Properties dialog after entering the state values of nDice. 



 

Figure 2: Entering the state values of nDice 

The conditional probability table of nSixes in the node edit pane should now look like the one shown in figure 3. 

 

Figure 3: The conditional probability table of nSixes 

This table is rather big and if you had to fill it in yourself it would be a pretty hard task. You would also have a tool for 

calculating the Binomial distribution, since the probability of rolling a specific number is a Binomial distribution depending 

on the number of dice you roll. 

However, the Hugin GUI allows you to generate the table automatically from an expression you specify. To do this for the 

nSixes node follow these steps: 

 Select nSixes as the currently selected node (so that it appears in the node edit pane) 

 From the "Table" menu select "Expressions" (notice, that the look of the table changes dramatically - only one 

cell is now shown) 

 Click in the single field of the table of nSixes 

 From the "Table" menu select "Build Expression". This should open the "Expression Builder" dialog 



 In the "Function Category" list select "Discrete Distributions" and in the "Function Name" list choose "Binomial", 

then press "OK". This should close the first dialog of the expression builder and open another one prompting 

you for the arguments to the Binomial distribution 

 Click inside the edit box of the "n" argument 

 Select nDice in the "Parents" list in the bottom and press "Insert" 

 In the edit box of the "p" argument type "1/6" 

 Press "OK" 

Now, you should have the expression "Binomial (nDice, 1/6)" in the single field of the nSixes table. This is shown in 

Figure 4. 

 

Figure 4: The expression table of nSixes after specifying a Binomial distribution depending on nDice 

This ends the tutorial about building a small Bayesian network using the table generator. Try compiling it and play with it 

(try selecting different values for the nDice node and propagate). After compiling the network, you can also go back to 

edit mode and take a look at the generated table: Select the nSixes node and select "Manual" from the "Table" menu. 

You will be warned that you are destroying the expression, but that does not matter now. This can be rebuilt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tutorial 8. Case Generator 

To generate cases based on the current conditional probability distribution, click the simulation icon as shown in Figure 

1. 

 

Figure 1: The Simulation Icon 

By default the Hugin GUI chooses to create 10,000 cases with 5 percent missing values. The user can change these 

values. To generate the cases, one of the algorithms: MCAR or MAR must be selected. Figure 2 shows the case 

generator window. 

 

Figure 2: The Case Generator Window 

Now the Hugin GUI will generate a set of cases and store these in a plain text file. Figure 3 shows the content of such a 

file where the cases are generated based on the Chest Clinic BN. 

 

Figure 3: The Content of a Data File 


